Background: To experience external objects in such a way that they are perceived as an integral part of one's own body is called embodiment. Wearable technology is a category of objects, which, due to its intrinsic properties (eg, close to the body, inviting frequent interaction, and access to personal information), is likely to be embodied. This phenomenon, which is referred to in this paper as wearable technology embodiment, has led to extensive conceptual considerations in various research fields. These considerations and further possibilities with regard to quantifying wearable technology embodiment are of particular value to the mobile health (mHealth) field. For example, the ability to predict the effectiveness of mHealth interventions and knowing the extent to which people embody the technology might be crucial for improving mHealth adherence. To facilitate examining wearable technology embodiment, we developed a measurement scale for this construct. Objective: This study aimed to conceptualize wearable technology embodiment, create an instrument to measure it, and test the predictive validity of the scale using well-known constructs related to technology adoption. The introduced instrument has 3 dimensions and includes 9 measurement items. The items are distributed evenly between the 3 dimensions, which include body extension, cognitive extension, and self-extension.Methods: Data were collected through a vignette-based survey (n=182). Each respondent was given 3 different vignettes, describing a hypothetical situation using a different type of wearable technology (a smart phone, a smart wristband, or a smart watch) with the purpose of tracking daily activities. Scale dimensions and item reliability were tested for their validity and Goodness of Fit Index (GFI). Results: Convergent validity of the 3 dimensions and their reliability were established as confirmatory factor analysis factor loadings45 (>0.70), average variance extracted values40 (>0.50), and minimum item to total correlations50 (>0.40) exceeded established threshold values. The reliability of the dimensions was also confirmed as Cronbach alpha and composite reliability exceeded 0.70. GFI testing confirmed that the 3 dimensions function as intercorrelated first-order factors. Predictive validity testing showed that these dimensions significantly add to multiple constructs associated with predicting the adoption of new technologies (ie, trust, perceived usefulness, involvement, attitude, and continuous intention). Conclusions: The wearable technology embodiment measurement instrument has shown promise as a tool to measure the extension of an individual's body, cognition, and self, as well as predict certain aspects of technology adoption. This 3-dimensional instrument can be applied to mixed method research and used by wearable technology developers to improve future versions through such things as fit, improved accuracy of biofeedback data, and customizable features or fashion to connect to the users' personal identity. Further research is recommended to apply this measurement instrument to multiple scenarios and technologies, and more diverse user groups.
DOCUMENT
Background:Current technology innovations, such as wearables, have caused surprising reactions and feelings of deep connection to devices. Some researchers are calling mobile and wearable technologies cognitive prostheses, which are intrinsically connected to individuals as if they are part of the body, similar to a physical prosthesis. Additionally, while several studies have been performed on the phenomenology of receiving and wearing a physical prosthesis, it is unknown whether similar subjective experiences arise with technology.Objective:In one of the first qualitative studies to track wearables in a longitudinal investigation, we explore whether a wearable can be embodied similar to a physical prosthesis. We hoped to gain insights and compare the phases of embodiment (ie, initial adjustment to the prosthesis) and the psychological responses (ie, accept the prosthesis as part of their body) between wearables and limb prostheses. This approach allowed us to find out whether this pattern was part of a cyclical (ie, period of different usage intensity) or asymptotic (ie, abandonment of the technology) pattern.Methods:We adapted a limb prosthesis methodological framework to be applied to wearables and conducted semistructured interviews over a span of several months to assess if, how, and to what extent individuals come to embody wearables similar to prosthetic devices. Twelve individuals wore fitness trackers for 9 months, during which time interviews were conducted in the following three phases: after 3 months, after 6 months, and at the end of the study after 9 months. A deductive thematic analysis based on Murray’s work was combined with an inductive approach in which new themes were discovered.Results:Overall, the individuals experienced technology embodiment similar to limb embodiment in terms of adjustment, wearability, awareness, and body extension. Furthermore, we discovered two additional themes of engagement/reengagement and comparison to another device or person. Interestingly, many participants experienced a rarely reported phenomenon in longitudinal studies where the feedback from the device was counterintuitive to their own beliefs. This created a blurring of self-perception and a dilemma of “whom” to believe, the machine or one’s self.Conclusions:There are many similarities between the embodiment of a limb prosthesis and a wearable. The large overlap between limb and wearable embodiment would suggest that insights from physical prostheses can be applied to wearables and vice versa. This is especially interesting as we are seeing the traditionally “dumb” body prosthesis becoming smarter and thus a natural merging of technology and body. Future longitudinal studies could focus on the dilemma people might experience of whether to believe the information of the device over their own thoughts and feelings. These studies might take into account constructs, such as technology reliance, autonomy, and levels of self-awareness.
DOCUMENT
Despite assumptions that wearable self-care technologies such as smart wristbands and smart watches help users to monitor and self-manage health in daily life, adherence rates are often quite low. In an effort to better understand what determines adherence to wearable self-care technologies, researchers have started to consider the extent to which a technology is perceived as being part of the user (i.e., technology embodiment) and the extent to which users feel they can influence reaching their health goals (i.e., empowerment). Although both concepts are assumed to determine adherence, few studies have empirically validated their influence. Furthermore, the relationships between technology embodiment, empowerment, and adherence to wearable self-care technology have also not been addressed. Drawing upon embodied theory and embodiment cognition theory, this research paper introduces and empirically validates ‘embodied empowerment’ as a predictor of adherence to wearable self-care technology. Using partial least squares structural equation modeling and multigroup analysis on a dataset of 317 wearable self-care technology users, we find empirical evidence of the validity of embodied empowerment as a determinant of adherence. We also discuss the implications for research and practice.
DOCUMENT
Electronic Sports (esports) is a form of digital entertainment, referred to as "an organised and competitive approach to playing computer games". Its popularity is growing rapidly as a result of an increased prevalence of online gaming, accessibility to technology and access to elite competition.Esports teams are always looking to improve their performance, but with fast-paced interaction, it can be difficult to establish where and how performance can be improved. While qualitative methods are commonly employed and effective, their widespread use provides little differentiation among competitors and struggles with pinpointing specific issues during fast interactions. This is where recent developments in both wearable sensor technology and machine learning can offer a solution. They enable a deep dive into player reactions and strategies, offering insights that surpass traditional qualitative coaching techniquesBy combining insights from gameplay data, team communication data, physiological measurements, and visual tracking, this project aims to develop comprehensive tools that coaches and players can use to gain insight into the performance of individual players and teams, thereby aiming to improve competitive outcomes. Societal IssueAt a societal level, the project aims to revolutionize esports coaching and performance analysis, providing teams with a multi-faceted view of their gameplay. The success of this project could lead to widespread adoption of similar technologies in other competitive fields. At a scientific level, the project could be the starting point for establishing and maintaining further collaboration within the Dutch esports research domain. It will enhance the contribution from Dutch universities to esports research and foster discussions on optimizing coaching and performance analytics. In addition, the study into capturing and analysing gameplay and player data can help deepen our understanding into the intricacies and complexities of teamwork and team performance in high-paced situations/environments. Collaborating partnersTilburg University, Breda Guardians.
A world where technology is ubiquitous and embedded in our daily lives is becoming increasingly likely. To prepare our students to live and work in such a future, we propose to turn Saxion’s Epy-Drost building into a living lab environment. This will entail setting up and drafting the proper infrastructure and agreements to collect people’s location and building data (e.g. temperature, humidity) in Epy-Drost, and making the data appropriately available to student and research projects within Saxion. With regards to this project’s effect on education, we envision the proposal of several derived student projects which will provide students the opportunity to work with huge amounts of data and state-of-the-art natural interaction interfaces. Through these projects, students will acquire skills and knowledge that are necessary in the current and future labor-market, as well as get experience in working with topics of great importance now and in the near future. This is not only aligned with the Creative Media and Game Technologies (CMGT) study program’s new vision and focus on interactive technology, but also with many other education programs within Saxion. In terms of research, the candidate Postdoc will study if and how the data, together with the building’s infrastructure, can be leveraged to promote healthy behavior through playful strategies. In other words, whether we can persuade people in the building to be more physically active and engage more in social interactions through data-based gamification and building actuation. This fits very well with the Ambient Intelligence (AmI) research group’s agenda in Augmented Interaction, and CMGT’s User Experience line. Overall, this project will help spark and solidify lasting collaboration links between AmI and CMGT, give body to AmI’s new Augmented Interaction line, and increase Saxion’s level of education through the dissemination of knowledge between researchers, teachers and students.
Despite the recognized benefits of running for promoting overall health, its widespread adoption faces a significant challenge due to high injury rates. In 2022, runners reported 660,000 injuries, constituting 13% of the total 5.1 million sports-related injuries in the Netherlands. This translates to a disturbing average of 5.5 injuries per 1,000 hours of running, significantly higher than other sports such as fitness (1.5 injuries per 1,000 hours). Moreover, running serves as the foundation of locomotion in various sports. This emphasizes the need for targeted injury prevention strategies and rehabilitation measures. Recognizing this social issue, wearable technologies have the potential to improve motor learning, reduce injury risks, and optimize overall running performance. However, unlocking their full potential requires a nuanced understanding of the information conveyed to runners. To address this, a collaborative project merges Movella’s motion capture technology with Saxion’s expertise in e-textiles and user-centered design. The result is the development of a smart garment with accurate motion capture technology and personalized haptic feedback. By integrating both sensor and actuator technology, feedback can be provided to communicate effective risks and intuitive directional information from a user-centered perspective, leaving visual and auditory cues available for other tasks. This exploratory project aims to prioritize wearability by focusing on robust sensor and actuator fixation, a suitable vibration intensity and responsiveness of the system. The developed prototype is used to identify appropriate body locations for vibrotactile stimulation, refine running styles and to design effective vibration patterns with the overarching objective to promote motor learning and reduce the risk of injuries. Ultimately, this collaboration aims to drive innovation in sports and health technology across different athletic disciplines and rehabilitation settings.