In this study, we examined the effects of a defender contesting jump shots on performance and gaze behaviors of basketball players taking jump shots. Thirteen skilled youth basketball players performed 48 shots from about 5 m from the basket; 24 uncontested and 24 contested. The participants wore mobile eye tracking glasses to measure their gaze behavior. As expected, an approaching defender trying to contest the shot led to significant changes in movement execution and gaze behavior including shorter shot execution time, longer jump time, longer ball flight time, later final fixation onset, and longer fixation on the defender. Overall, no effects were found for shooting accuracy. However, the effects on shot accuracy were not similar for all participants: six participants showed worse performance and six participants showed better performance in the contested compared to the uncontested condition. These changes in performance were accompanied by differences in gaze behavior. The participants with worse performance showed shorter absolute and relative final fixation duration and a tendency for an earlier final fixation offset in the contested condition compared to the uncontested condition, whereas gaze behavior of the participants with better performance for contested shots was relatively unaffected. The results confirm that a defender contesting the shot is a relevant constraint for basketball shooting suggesting that representative training designs should also include contested shots, and more generally other constraints that are representative of the actual performance setting such as time or mental pressure.
The aim of this study was to develop and describe a wheelchair mobility performance test in wheelchair basketball and to assess its construct validity and reliability. To mimic mobility performance of wheelchair basketball matches in a standardised manner, a test was designed based on observation of wheelchair basketball matches and expert judgement. Forty-six players performed the test to determine its validity and 23 players performed the test twice for reliability. Independent-samples t-tests were used to assess whether the times needed to complete the test were different for classifications, playing standards and sex. Intraclass correlation coefficients (ICC) were calculated to quantify reliability of performance times. Males performed better than females (P < 0.001, effect size [ES] = −1.26) and international men performed better than national men (P < 0.001, ES = −1.62). Performance time of low (≤2.5) and high (≥3.0) classification players was borderline not significant with a moderate ES (P = 0.06, ES = 0.58). The reliability was excellent for overall performance time (ICC = 0.95). These results show that the test can be used as a standardised mobility performance test to validly and reliably assess the capacity in mobility performance of elite wheelchair basketball athletes. Furthermore, the described methodology of development is recommended for use in other sports to develop sport-specific tests. “This is an Accepted Manuscript of an article published by Taylor & Francis in "Journal of Sports Sciences" on 01/16/17, available online: https://doi.org/10.1080/02640414.2016.1276613. LinkedIn: https://www.linkedin.com/in/annemarie-de-witte-9582b154/ https://www.linkedin.com/in/moniqueberger/ https://www.linkedin.com/in/rienkvdslikke/
MULTIFILE
Purpose: To provide insight on the effect of wheelchair settings on wheelchair mobility performance (WMP). Methods: Twenty elite wheelchair basketball athletes of low (n = 10) and high classification (n = 10) were tested in a wheelchair-basketball-directed field test. Athletes performed the test in their own wheelchairs, which were modified for 5 additional conditions regarding seat height (high–low), mass (central–distributed), and grip. The previously developed inertial-sensor-based WMP monitor was used to extract wheelchair kinematics in all conditions. Results: Adding mass showed most effect on WMP, with a reduced average acceleration across all activities. Once distributed, additional mass also reduced maximal rotational speed and rotational acceleration. Elevating seat height had an effect on several performance aspects in sprinting and turning, whereas lowering seat height influenced performance minimally. Increased rim grip did not alter performance. No differences in response were evident between low- and high-classified athletes. Conclusions: The WMP monitor showed sensitivity to detect performance differences due to the small changes in wheelchair configuration. Distributed additional mass had the most effect on WMP, whereas additional grip had the least effect of conditions tested. Performance effects appear similar for both low- and high-classified athletes. Athletes, coaches, and wheelchair experts are provided with insight into the performance effect of key wheelchair settings, and they are offered a proven sensitive method to apply in sport practice, in their search for the best wheelchair–athlete combination. https://doi.org/10.1123/ijspp.2017-0641 LinkedIn: https://www.linkedin.com/in/rienkvdslikke/ https://www.linkedin.com/in/annemarie-de-witte-9582b154/ https://www.linkedin.com/in/moniqueberger/
MULTIFILE