Children with spina bifida who are wheelchair-users are less physically active than their typically developing peers. It is important to understand relations between physical activity and other factors, so approriate interventions can be developed. We explored relations between physical activity and fitness, age, sex and severity of disability in children that were 5–19 years of age who were diagnosed with spina bifida and who are wheelchair-users. We found that older age and the inability to walk negatively influence physical activity. We did not find a relation between physical activity and fitness or physical activity and sex.
DOCUMENT
ABSTRACT Purpose: To gain insight into determinants of physical activity in wheelchair users with spinal cord injury or lower limb amputation, from the perspective of both wheelchair users and rehabilitation professionals. Methods: Seven focus groups were conducted: five with wheelchair users (n=25) and two with rehabilitation professionals (n¼11). The transcripts were analysed using a sequential coding strategy, in which the reported determinants of physical activity were categorized using the Physical Activity for people with a Disability (PAD) model. Results: Reported personal determinants of physical activity were age, general health status, stage of life, demotivation due to difficulty burning calories, available time and energy, balance in daily life, attitude, and history of a physically active lifestyle. Reported environmental determinants were professional guidance, inconvenient exercise times, accessibility of facilities, costs, transportation difficulties, equipment difficulties, and social support. Conclusions: Important, changeable determinants of physical activity that might be influenced in future lifestyle interventions for wheelchair users are: balance in daily life leading to more time and energy to exercise, attitude towards physical activity, professional guidance, accessibility of facilities (providing information on how and where to find accessible facilities), and social support (learning how to get this)
DOCUMENT
Wheelchair ergometer Obtaining objective propulsion data to analyze the interface of user and wheelchair in action to contribute to the advice for adjustments. Active lifestyle A well-adjusted wheelchair can contribute to an active lifestyle, maximal participation in society and avoiding overload. Current status Protocol consisted of 30s sprint, driving at comfortable speed and maintaining given constant speed.
DOCUMENT
Paralympic wheelchair athletes solely depend on the power of their upper-body for their on-court wheeled mobility as well as for performing sport-specific actions in ball sports, like a basketball shot or a tennis serve. The objective of WheelPower is to improve the power output of athletes in their sport-specific wheelchair to perform better in competition. To achieve this objective the current project systematically combines the three Dutch measurement innovations (WMPM, Esseda wheelchair ergometer, PitchPerfect system) to monitor a large population of athletes from different wheelchair sports resulting in optimal power production by wheelchair athletes during competition. The data will be directly implemented in feedback tools accessible to athletes, trainers and coaches which gives them the unique opportunity to adapt their training and wheelchair settings for optimal performance. Hence, the current consortium facilitates mass and focus by uniting scientists and all major Paralympic wheelchair sports to monitor the power output of many wheelchair athletes under field and lab conditions, which will be assisted by the best data science approach to this challenge.
DOCUMENT
Daily wheelchair ambulation is seen as a risk factor for shoulder problems, which are prevalent in manual wheelchair users. To examine the long-term effect of shoulder load from daily wheelchair ambulation on shoulder problems, quantification is required in real-life settings. In this study, we describe and validate a comprehensive and unobtrusive methodology to derive clinically relevant wheelchair mobility metrics (WCMMs) from inertial measurement systems (IMUs) placed on the wheelchair frame and wheel in real-life settings. The set of WCMMs includes distance covered by the wheelchair, linear velocity of the wheelchair, number and duration of pushes, number and magnitude of turns and inclination of the wheelchair when on a slope. Data are collected from ten able-bodied participants, trained in wheelchair-related activities, who followed a 40 min course over the campus. The IMU-derived WCMMs are validated against accepted reference methods such as Smartwheel and video analysis. Intraclass correlation (ICC) is applied to test the reliability of the IMU method. IMU-derived push duration appeared to be less comparable with Smartwheel estimates, as it measures the effect of all energy applied to the wheelchair (including thorax and upper extremity movements), whereas the Smartwheel only measures forces and torques applied by the hand at the rim. All other WCMMs can be reliably estimated from real-life IMU data, with small errors and high ICCs, which opens the way to further examine real-life behavior in wheelchair ambulation with respect to shoulder loading. Moreover, WCMMs can be applied to other applications, including health tracking for individual interest or in therapy settings.
DOCUMENT
This study is part of the WHeelchair ExercisE and Lifestyle Study (WHEELS) project and aims to identify determinants of dietary behaviour in wheelchair users with spinal cord injury or lower limb amputation, from the perspectives of both wheelchair users and rehabilitation professionals. Results of focus groups with wheelchair users (n = 25) and rehabilitation professionals (n = 11) are presented using an integrated International Classification of Functioning, Disability and Health and Attitude, Social influence and self-Efficacy model as theoretical framework.
LINK
Purpose: To evaluate the effects of a combination of wheelchair mobility skills (WMS) training and exercise training on physical activity (PA), WMS, confidence in wheelchair mobility, and physical fitness. Methods: Youth using a manual wheelchair (n = 60) participated in this practice-based intervention, with a waiting list period (16 weeks), exercise training (8 weeks), WMS training (8 weeks), and follow-up (16 weeks). Repeated measures included: PA (Activ8), WMS (Utrecht Pediatric Wheelchair Mobility Skills Test), confidence in wheelchair mobility (Wheelchair Mobility Confidence Scale), and physical fitness (cardiorespiratory fitness, (an)aerobic performance) and were analysed per outcome parameter using a multilevel model analyses. Differences between the waiting list and training period were determined with an unpaired sample t-test. Results: Multilevel model analysis showed significant positive effects for PA (p = 0.01), WMS (p < 0.001), confidence in wheelchair mobility (p < 0.001), aerobic (p < 0.001), and anaerobic performance (p < 0.001). Unpaired sample t-tests underscored these effects for PA (p < 0.01) and WMS (p < 0.001). There were no effects on cardiorespiratory fitness. The order of training (exercise before WMS) had a significant effect on confidence in wheelchair mobility. Conclusions: A combination of exercise and WMS training appears to have significant positive long-term effects on PA, WMS, confidence in wheelchair mobility, and (an)aerobic performance in youth using a manual wheelchair.Implications for rehabilitationExercise training and wheelchair mobility skills (WMS) training can lead to a sustained improvement in physical activity (PA) in youth using a manual wheelchair.These combined trainings can also lead to a sustained increase in WMS, confidence in wheelchair mobility, and (an)aerobic performance.More attention is needed in clinical practice and in research towards improving PA in youth using a manual wheelchair.
DOCUMENT
Objective: Despite the common occurrence of lower levels of physical activity and physical fitness in youth with spina bifida (SB) who use a wheelchair, there are very few tests available to measure and assess these levels. The purpose of this study was to determine reliability and the physiologic response of the 6-minute push test (6MPT) in youth with SB who self-propel a wheelchair. Methods: In this reliability and observational study, a sample of 53 youth with SB (5-19 years old; mean age = 13 years 7 months; 32 boys and 21 girls) who used a wheelchair performed 2 exercise tests: the 6MPT and shuttle ride test. Heart rate, minute ventilation, respiratory exchange ratio, and oxygen consumption were measured using a calibrated mobile gas analysis system and a heart rate monitor. For reliability, intraclass correlation coefficients (ICCs), SE of measurement, smallest detectable change for total covered distance, minute work, and heart rate were calculated. Physiologic response during the 6MPT was expressed as percentage of maximal values achieved during the shuttle ride test. Results: The ICCs for total distance and minute work were excellent (0.95 and 0.97, respectively), and the ICC for heart rate was good (0.81). The physiologic response during the 6MPT was 85% to 89% of maximal values, except for minute ventilation (70.6%). Conclusions: For most youth with SB who use a wheelchair for mobility or sports participation, the 6MPT is a reliable, functional performance test on a vigorous level of exercise. Impact: This is the first study to investigate physiologic response during the 6MPT in youth (with SB) who are wheelchair using. Clinicians can use the 6MPT to evaluate functional performance and help design effective exercise programs for youth with SB who are wheelchair using. Keywords: 6-minute push test; adolescent; disabled children; spinal diseases; wheelchairs.
DOCUMENT
Athlete impairment level is an important factor in wheelchair mobility performance (WMP) in sports. Classification systems, aimed to compensate impairment level effects on performance, vary between sports. Improved understanding of resemblances and differences in WMP between sports could aid in optimizing the classification methodology. Furthermore, increased performance insight could be applied in training and wheelchair optimization. The wearable sensor-based wheelchair mobility performance monitor (WMPM) was used to measure WMP of wheelchair basketball, rugby and tennis athletes of (inter-)national level during match-play. As hypothesized, wheelchair basketball athletes show the highest average WMP levels and wheelchair rugby the lowest, whereas wheelchair tennis athletes range in between for most outcomes. Based on WMP profiles, wheelchair basketball requires the highest performance intensity, whereas in wheelchair tennis, maneuverability is the key performance factor. In wheelchair rugby, WMP levels show the highest variation comparable to the high variation in athletes’ impairment levels. These insights could be used to direct classification and training guidelines, with more emphasis on intensity for wheelchair basketball, focus on maneuverability for wheelchair tennis and impairment-level based training programs for wheelchair rugby. Wearable technology use seems a prerequisite for further development of wheelchair sports, on the sports level (classification) and on individual level (training and wheelchair configuration).
DOCUMENT
In wheelchair sports, there is an increasing need to monitor mechanical power in the field. When rolling resistance is known, inertial measurement units (IMUs) can be used to determine mechanical power. However, upper body (i.e., trunk) motion affects the mass distribution between the small front and large rear wheels, thus affecting rolling resistance. Therefore, drag tests – which are commonly used to estimate rolling resistance – may not be valid. The aim of this study was to investigate the influence of trunk motion on mechanical power estimates in hand-rim wheelchair propulsion by comparing instantaneous resistance-based power loss with drag test-based power loss. Experiments were performed with no, moderate and full trunk motion during wheelchair propulsion. During these experiments, power loss was determined based on 1) the instantaneous rolling resistance and 2) based on the rolling resistance determined from drag tests (thus neglecting the effects of trunk motion). Results showed that power loss values of the two methods were similar when no trunk motion was present (mean difference [MD] of 0.6 1.6 %). However, drag test-based power loss was underestimated up to −3.3 2.3 % MD when the extent of trunk motion increased (r = 0.85). To conclude, during wheelchair propulsion with active trunk motion, neglecting the effects of trunk motion leads to an underestimated mechanical power of 1 to 6 % when it is estimated with drag test values. Depending on the required accuracy and the amount of trunk motion in the target group, the influence of trunk motion on power estimates should be corrected for.
DOCUMENT