In wheelchair rugby (WR) athletes with tetraplegia, wheelchair performance may be impaired due to (partial) loss of innervation of upper extremity and trunk muscles, and low blood pressure (BP). The objective was to assess the effects of electrical stimulation (ES)-induced co-contraction of trunk muscles on trunk stability, arm force/power, BP, and WR performance.
Purpose: To provide insight on the effect of wheelchair settings on wheelchair mobility performance (WMP). Methods: Twenty elite wheelchair basketball athletes of low (n = 10) and high classification (n = 10) were tested in a wheelchair-basketball-directed field test. Athletes performed the test in their own wheelchairs, which were modified for 5 additional conditions regarding seat height (high–low), mass (central–distributed), and grip. The previously developed inertial-sensor-based WMP monitor was used to extract wheelchair kinematics in all conditions. Results: Adding mass showed most effect on WMP, with a reduced average acceleration across all activities. Once distributed, additional mass also reduced maximal rotational speed and rotational acceleration. Elevating seat height had an effect on several performance aspects in sprinting and turning, whereas lowering seat height influenced performance minimally. Increased rim grip did not alter performance. No differences in response were evident between low- and high-classified athletes. Conclusions: The WMP monitor showed sensitivity to detect performance differences due to the small changes in wheelchair configuration. Distributed additional mass had the most effect on WMP, whereas additional grip had the least effect of conditions tested. Performance effects appear similar for both low- and high-classified athletes. Athletes, coaches, and wheelchair experts are provided with insight into the performance effect of key wheelchair settings, and they are offered a proven sensitive method to apply in sport practice, in their search for the best wheelchair–athlete combination. https://doi.org/10.1123/ijspp.2017-0641 LinkedIn: https://www.linkedin.com/in/rienkvdslikke/ https://www.linkedin.com/in/annemarie-de-witte-9582b154/ https://www.linkedin.com/in/moniqueberger/
MULTIFILE
Purpose: To evaluate the effects of a combination of wheelchair mobility skills (WMS) training and exercise training on physical activity (PA), WMS, confidence in wheelchair mobility, and physical fitness. Methods: Youth using a manual wheelchair (n = 60) participated in this practice-based intervention, with a waiting list period (16 weeks), exercise training (8 weeks), WMS training (8 weeks), and follow-up (16 weeks). Repeated measures included: PA (Activ8), WMS (Utrecht Pediatric Wheelchair Mobility Skills Test), confidence in wheelchair mobility (Wheelchair Mobility Confidence Scale), and physical fitness (cardiorespiratory fitness, (an)aerobic performance) and were analysed per outcome parameter using a multilevel model analyses. Differences between the waiting list and training period were determined with an unpaired sample t-test. Results: Multilevel model analysis showed significant positive effects for PA (p = 0.01), WMS (p < 0.001), confidence in wheelchair mobility (p < 0.001), aerobic (p < 0.001), and anaerobic performance (p < 0.001). Unpaired sample t-tests underscored these effects for PA (p < 0.01) and WMS (p < 0.001). There were no effects on cardiorespiratory fitness. The order of training (exercise before WMS) had a significant effect on confidence in wheelchair mobility. Conclusions: A combination of exercise and WMS training appears to have significant positive long-term effects on PA, WMS, confidence in wheelchair mobility, and (an)aerobic performance in youth using a manual wheelchair.Implications for rehabilitationExercise training and wheelchair mobility skills (WMS) training can lead to a sustained improvement in physical activity (PA) in youth using a manual wheelchair.These combined trainings can also lead to a sustained increase in WMS, confidence in wheelchair mobility, and (an)aerobic performance.More attention is needed in clinical practice and in research towards improving PA in youth using a manual wheelchair.