This paper presents a report of some of the activities of the International Energy Agency's (IEA) Wind TCP Task 39. By identifying best practices in an international collaboration, Task 39 hopes to provide the scientific evidence to inform improved regulations and standards, increasing the effectiveness of quiet wind turbine technology. Task 39 is divided into five separate work packages, which address the broad wind turbine noise topic in successive steps; from wind turbine noise generation (WP2), to airborne noise propagation over large distances (WP3). The assessment of wind turbine noise and its impact on humans is addressed in WP4, while WP5 is dealing with other aspects of perception and acceptance, which may be related to noise. All WPs contribute to a dedicated Work Package on dissemination (WP1). This paper provides an update of activities primarily associated with the socio-psychological aspects of wind turbine noise (WP4 and WP5). Through the consideration of a wide variety of factors, including measurement technologies, auralisation and psychology, the effects on noise perception, annoyance and its impact on wellbeing and health is being further investigated. This paper presents a discussion of the activities of each member country and highlights some of the key research questions that need to be further considered.
LINK
tract Micro wind turbines can be structurally integrated on top of the solid base of noise barriers near highways. A number of performance factors were assessed with holistic experiments in wind tunnel and in the field. The wind turbines underperformed when exposed in yawed flow conditions. The theoretical cosθ theories for yaw misalignment did not always predict power correctly. Inverter losses turned out to be crucial especially in standby mode. Combination of standby losses with yawed flow losses and low wind speed regime may even result in a net power consuming turbine. The micro wind turbine control system for maintaining optimal power production underperformed in the field when comparing tip speed ratios and performance coefficients with the values recorded in the wind tunnel. The turbine was idling between 20%–30% of time as it was assessed for sites with annual average wind speeds of three to five meters per second without any power production. Finally, the field test analysis showed that inadequate yaw response could potentially lead to 18% of the losses, the inverter related losses to 8%, and control related losses to 33%. The totalized loss led to a 48% efficiency drop when compared with the ideal power production measured before the inverter. Micro wind turbine’s performance has room for optimization for application in turbulent wind conditions on top of noise barriers. https://doi.org/10.3390/en14051288
DOCUMENT
This paper assesses wind resource characteristics and energy yield for micro wind turbines integrated on noise barriers. An experimental set-up with sonic anemometers placed on top of the barrier in reference positions is realized. The effect on wind speed magnitude, inflow angle and turbulence intensity is analysed. The annual energy yield of a micro wind turbine is estimated and compared using data from a micro-wind turbine wind tunnel experiment and field data. Electrical energy costs are discussed as well as structural integration cost reduction and the potential energy yield could decrease costs. It was found that instantaneous wind direction towards the barrier and the height of observation play an influential role for the results. Wind speed increases in perpendicular flows while decreases in parallel flow, by +35% down to −20% from the reference. The azimuth of the noise barrier expressed in wind field rotation angles was found to be influential resulted in 50%–130% changes with respect to annual energy yield. A micro wind turbine (0.375 kW) would produce between 100 and 600 kWh annually. Finally, cost analysis with cost reductions due to integration and the energy yield changes due to the barrier, show a LCOE reduction at 60%–90% of the reference value. https://doi.org/10.1016/j.jweia.2020.104206
DOCUMENT
While modern wind turbines have become by far the largest rotating machines on Earth with further upscaling planned for the future, a renewed interest in small wind turbines (SWTs) is fostering energy transition and smart grid development. Small machines have traditionally not received the same level of aerodynamic refinement as their larger counterparts, resulting in lower efficiency, lower capacity factors, and therefore a higher cost of energy. In an effort to reduce this gap, research programs are developing worldwide. With this background, the scope of the present study is 2-fold. In the first part of this paper, an overview of the current status of the technology is presented in terms of technical maturity, diffusion, and cost. The second part of the study proposes five grand challenges that are thought to be key to fostering the development of small wind turbine technology in the near future, i.e. (1) improving energy conversion of modern SWTs through better design and control, especially in the case of turbulent wind; (2) better predicting long-term turbine performance with limited resource measurements and proving reliability; (3) improving the economic viability of small wind energy; (4) facilitating the contribution of SWTs to the energy demand and electrical system integration; (5) fostering engagement, social acceptance, and deployment for global distributed wind markets. To tackle these challenges, a series of unknowns and gaps are first identified and discussed. Based on them, improvement areas are suggested, for which 10 key enabling actions are finally proposed.
LINK
This study evaluates the performance of a counter-rotating dual rotor wind turbine (CR-DRWT) with 2 m2 rotor radius equipped with a double rotational armature in an open jet wind tunnel. With only one similar-sized design previously assessed in a wind tunnel, this study offers valuable validation material for the literature. Through wind tunnel testing, the CR-DRWT confirmed earlier findings in literature and achieved a 15% to 50% increase in power output and a 10% increase in efficiency (CP) compared to a single rotor configuration at higher wind speeds (> 7 m/s). Though these gains were not observed at lower wind speeds (4–7 m/s). The simplified mechanics of a double rotational armature show promise for SWTs, as financial viability depends on reducing LCOE through efficiency improvements that maximize energy capture. The design's maximum CP values were below those achieved in previous field tests at larger scale highlighting potential for improvement for smaller sized turbines. To further explore the aerodynamics of CR-DRWT's, computational fluid dynamics (CFD) simulations are recommended, as they could provide insights into optimizing flow dynamics around CR-DRWT's. Finally, the study emphasizes the need for precise pitch angle and rotational speed measurements to improve the value of future measurements.
DOCUMENT
The dynamic inflow effect denotes the unsteady aerodynamic response to fast changes in rotor loading due to a gradual adaption of the wake. This does lead to load overshoots. The objective of the paper was to increase the understanding of that effect based on pitch step experiments on a 1.8 m diameter model wind turbine, which are performed in the large open jet wind tunnel of ForWind – University of Oldenburg. The flow in the rotor plane is measured with a 2D laser Doppler anemometer, and the dynamic wake induction factor transients in axial and tangential direction are extracted. Further, integral load measurements with strain gauges and hot-wire measurements in the near and close far wake are performed. The results show a clear gradual decay of the axial induction factors after a pitch step, giving the first direct experimental evidence of dynamic inflow due to pitch steps. Two engineering models are fitted to the induction factor transients to further investigate the relevant time constants of the dynamic inflow process. The radial dependency of the axial induction time constants as well as the dependency on the pitch direction is discussed. It is confirmed that the nature of the dynamic inflow decay is better described by two rather than only one time constant. The dynamic changes in wake radius are connected to the radial dependency of the axial induction transients. In conclusion, the comparative discussion of inductions, wake deployment and loads facilitate an improved physical understanding of the dynamic inflow process for wind turbines. Furthermore, these measurements provide a new detailed validation case for dynamic inflow models and other types of simulations.
LINK
Airborne wind energy (AWE) is an emerging renewable energy technology that uses kites to harvest winds at higher altitudes than wind turbines. Understanding how residents experience a local AWE system (AWES) is important as the technology approaches commercialization. Such knowledge can help adjust the design and deployment of an AWES to fit locals' needs better, thereby decreasing the technology's burden on people. Although the AWE literature claims that the technology affects nature and residents less than wind turbines, empirical evidence has been lacking. This first community acceptance study recruited residents within a 3.5 km radius of an AWE test site in Northern Germany. Using structured questionnaires, 54 residents rated the AWES and the closest wind farm on visual, sound, safety, siting, environmental, and ecological aspects. Contrary to the literature's claims, residents assessed the noise, ecological, and safety impacts similarly for the AWES and the wind farm. Only visual impacts were rated better for the AWES (e.g., no shadows were perceived). Consistent with research on wind turbines, residents who rated the site operation as fairer and the developer as more transparent tended to have more positive attitudes towards the AWES and to experience less noise annoyance. Consequently, recommendations for the AWE industry and policymakers include mitigating technology impacts and implementing evidence-based strategies to ensure just and effective project development. The findings are limited to one specific AWES using soft-wing kites. Future research should assess community responses across regions and different types of AWESs to test the findings' generalizability.
MULTIFILE
Renewable energy sources have an intermittent character that does not necessarily match energy demand. Such imbalances tend to increase system cost as they require mitigation measures and this is undesirable when available resources should be focused on increasing renewable energy supply. Matching supply and demand should therefore be inherent to early stages of system design, to avoid mismatch costs to the greatest extent possible and we need guidelines for that. This paper delivers such guidelines by exploring design of hybrid wind and solar energy and unusual large solar installation angles. The hybrid wind and solar energy supply and energy demand is studied with an analytical analysis of average monthly energy yields in The Netherlands, Spain and Britain, capacity factor statistics and a dynamic energy supply simulation. The analytical focus in this paper differs from that found in literature, where analyses entirely rely on simulations. Additionally, the seasonal energy yield profile of solar energy at large installation angles is studied with the web application PVGIS and an hourly simulation of the energy yield, based on the Perez model. In Europe, the energy yield of solar PV peaks during the summer months and the energy yield of wind turbines is highest during the winter months. As a consequence, three basic hybrid supply profiles, based on three different mix ratios of wind to solar PV, can be differentiated: a heating profile with high monthly energy yield during the winter months, a flat or baseload profile and a cooling profile with high monthly energy yield during the summer months. It is shown that the baseload profile in The Netherlands is achieved at a ratio of wind to solar energy yield and power of respectively Ew/Es = 1.7 and Pw/Ps = 0.6. The baseload ratio for Spain and Britain is comparable because of similar seasonal weather patterns, so that this baseload ratio is likely comparable for other European countries too. In addition to the seasonal benefits, the hybrid mix is also ideal for the short-term as wind and solar PV adds up to a total that has fewer energy supply flaws and peaks than with each energy source individually and it is shown that they are seldom (3%) both at rated power. This allows them to share one cable, allowing “cable pooling”, with curtailment to -for example-manage cable capacity. A dynamic simulation with the baseload mix supply and a flat demand reveals that a 100% and 75% yearly energy match cause a curtailment loss of respectively 6% and 1%. Curtailment losses of the baseload mix are thereby shown to be small. Tuning of the energy supply of solar panels separately is also possible. Compared to standard 40◦ slope in The Netherlands, facade panels have smaller yield during the summer months, but almost equal yield during the rest of the year, so that the total yield adds up to 72% of standard 40◦ slope panels. Additionally, an hourly energy yield simulation reveals that: façade (90◦) and 60◦ slope panels with an inverter rated at respectively 50% and 65% Wp, produce 95% of the maximum energy yield at that slope. The flatter seasonal yield profile of “large slope panels” together with decreased peak power fits Dutch demand and grid capacity more effectively.
DOCUMENT
Tijdens de rede behandelt Gerard Schepers een aantal actuele ontwikkelingen in de windenergie wereld omdat deze ontwikkelingen de randvoorwaarden bepalen waarbinnen het lectoraat opereert. Vervolgens wordt een aantal speerpunten gedefinieerd waar het lectoraat zich mee bezig houdt. Ook houdt het lectoraat zich bezig met de Human Capital Agenda waarvoor op verzoek van het Topconsortium voor Kennis en Innovatie (TKI) Wind op Zee, een plan van aanpak is gedefinieerd. Tijdens de rede wordt het feit dat windenergie gewoon een leuk en interessant vak is, zeker niet onberoerd gelaten!
MULTIFILE
Within the context of the Iliad project, the authors present technical challenges and the first results of having valid 3D scenes of (non-)existing offshore wind farms procedurally and automatically generated within either the Unreal or Unity game engine. The Iliad – Digital Twins of the Ocean project (EU Horizon 2020) aims to develop a ‘system of systems’ for creating cutting-edge digital twins of specific sea and ocean areas for diverse purposes related to their sustainable use and protection. One of the Iliad pilots addresses the topic of offshore floating wind farm construction or maintenance scenario testing and validation using the Unity 3D game engine. This work will speed up the development of these scenarios by procedurally and automatically creating the Unity 3D scene rather than manually (which is done at present). The main technical challenges concern the data-driven approach, in which a JSON configuration file drives the scene creation. The first results show a base wind farm running in Unreal 5.1. The final product will be able to handle environmental conditions, biological conditions, and specific human activities as input parameters.
DOCUMENT