As Vehicle-to-Everything (V2X) communication technologies gain prominence, ensuring human safety from radiofrequency (RF) electromagnetic fields (EMF) becomes paramount. This study critically examines human RF exposure in the context of ITS-5.9 GHz V2X connectivity, employing a combination of numerical dosimetry simulations and targeted experimental measurements. The focus extends across Road-Side Units (RSUs), On-Board Units (OBUs), and, notably, the advanced vehicular technologies within a Tesla Model S, which includes Bluetooth, Long Term Evolution (LTE) modules, and millimeter-wave (mmWave) radar systems. Key findings indicate that RF exposure levels for RSUs and OBUs, as well as from Tesla’s integrated technologies, consistently remain below the International Commission on Non-Ionizing Radiation Protection (ICNIRP) exposure guidelines by a significant margin. Specifically, the maximum exposure level around RSUs was observed to be 10 times lower than ICNIRP reference level, and Tesla’s mmWave radar exposure did not exceed 0.29 W/m2, well below the threshold of 10 W/m2 set for the general public. This comprehensive analysis not only corroborates the effectiveness of numerical dosimetry in accurately predicting RF exposure but also underscores the compliance of current V2X communication technologies with exposure guidelines, thereby facilitating the protective advancement of intelligent transportation systems against potential health risks.
MULTIFILE
The effective operation of distributed energy sources relies significantly on the communication systems employed in microgrids. This article explores the fundamental communication requirements, structures, and protocols necessary to establish a secure connection in microgrids. This article examines the present difficulties facing, and progress in, smart microgrid communication technologies, including wired and wireless networks. Furthermore, it evaluates the incorporation of diverse security methods. This article showcases a case study that illustrates the implementation of a distributed cyber-security communication system in a microgrid setting. The study concludes by emphasizing the ongoing research endeavors and suggesting potential future research paths in the field of microgrid communications.
MULTIFILE
In het kader van het RAAK MKB project Wireless Sensortechnologie bij Calamiteiten van het Saxion Kenniscentrum Design en Technologie - lectoraat Ambient Intelligence - hebben studenten van de minor Ambient Intelligence een inventariserend onderzoek uitgevoerd naar nieuwe, slimme technologieën om een natuurbrand te detecteren. Van hun uitgebreide verslaglegging geven we in dit rapport de hoofdlijnen weer. Er is uitgegaan van de Nederlandse situatie die geschetst is door de brandweer van de Veiligheidsregio Noord- en Oost-Gelderland. De mogelijke nieuwe technieken worden beschreven. Als veel belovend komt de technologie van wireless sensornetwerken naar voren.
MULTIFILE
Creating and testing the first Brand Segmentation Model in Augmented Reality using Microsoft Hololens. Sanoma together with SAMR launched an online brand segmentation tool based on large scale research, The brand model uses several brand values divided over three axes. However they cannot be displayed clearly in a 2D model. The space of BSR Quality Planner can be seen as a 3-dimensional meaningful space that is defined by the terms used to typify the brands. The third axis concerns a behaviour-based dimension: from ‘quirky behaviour’ to ‘standardadjusted behaviour’ (respectful, tolerant, solidarity). ‘Virtual/augmented reality’ does make it possible to clearly display (and experience) 3D. The Academy for Digital Entertainment (ADE) of Breda University of Applied Sciences has created the BSR Quality Planner in Virtual Reality – as a hologram. It’s the world’s first segmentation model in AR. Breda University of Applied Sciences (professorship Digital Media Concepts) has deployed hologram technology in order to use and demonstrate the planning tool in 3D. The Microsoft HoloLens can be used to experience the model in 3D while the user still sees the actual surroundings (unlike VR, with AR the space in which the user is active remains visible). The HoloLens is wireless, so the user can easily walk around the hologram. The device is operated using finger gestures, eye movements or voice commands. On a computer screen, other people who are present can watch along with the user. Research showed the added value of the AR model.Partners:Sanoma MediaMarketResponse (SAMR)
In het RAAK-MKB-project ‘Industrieel hergebruik van EoL thermoharde composieten’ is in het onderdeel van de ontwikkeling van ontwerpregels geadviseerd dat het hergebruikte gedeelte in een constructie niet moet worden meegenomen voor kruipbelasting (langeduur-belasting). Dit komt voort uit een conservatieve (veilige) aanname en gebrek aan lange-duur meetgegevens. Voor het verkrijgen van meetgegevens om de ontwerpregels voor kruip te verbeteren zijn ingebouwde sensoren nodig die tijdens het RAAK-project niet voorhanden waren. Het onderzoek in de TOP-UP betreft het ontwikkelen en testen van ingebouwde sensoren in composieten die zijn opgebouwd met End-of-Life thermoharde composieten. Met de sensoren kan op gedefinieerde plaatsen in het product de vervorming (rek) en temperatuur gemeten worden en draadloos worden gecommuniceerd naar buiten het product. Op deze manier kan het product gemonitord worden voor een periode van ten minste 15 jaar teneinde het kruipgedrag in kaart te kunnen brengen. Vanuit het minor-programma Embedded wireless sensors van de opleiding Elektrotechniek gaan twee studenten starten met het opstellen van een programma van eisen voor de sensoren en de communicatie voor de signalen. Leveranciers van systemen worden hierbij betrokken. Vervolgens gaan de studenten onder leiding van hun begeleidende docent en onderzoekers van het lectoraat Kunststoftechnologie de sensoren inbouwen in een proefopstelling in het composietenlab. Hiermee wordt het systeem getest en worden optimalisatie-mogelijkheden opgesteld. In een definitieve opstelling worden sensoren ingebouwd in een composietbalk die is opgebouwd uit hergebruikt EoL composiet en wordt het systeem getest. De nauwkeurigheid en stabiliteit van de metingen wordt getest en de draadloze communicatie van de meetsignalen van binnen in de balk naar een ontvangend systeem buiten. De meetgegevens worden geanalyseerd en er worden aanbevelingen gedaan voor verder gebruik en implementatie. Ontwikkeling, tests, analyse en aanbevelingen worden gerapporteerd en gepresenteerd aan het lectoraat, de betrokken opleidingen en de betrokken leveranciers.
Management policy for protected species is currently often based on literature reviews and expert judgement, even though it requires tailor-made species knowledge on a local level. While wildlife management should preferably be evidence based, tailor-made field data is seldom used in current practices, because it is hardly available, difficult to collect and expensive. Recent development of digital technology is changing the field of wildlife management with “more, better, faster and cheaper” ways of data collection. Especially automated collection of field data with different types of sensors is promising, whereas miniaturization and low cost mass-production increase availability and use of these sensors. For collection of field data about predator-prey interactions, there is a need to develop wireless sensor networks that automatically identify different species in a community, while they record their spatially explicit data and their behaviour. Therefore, we will put together a consortium of partners that will develop a EU LIFE programme proposal, with the focus to develop a sensor network necessary to automatically monitor multiple species (i.e., species communities) for species conservation management. The consortium will consist of Van Hall Larenstein, Sovon Dutch Centre for Field Ornithology, the Dutch Mammal Society, Sensing Clues and DIKW intelligence. It will bring together a strong mix of expert knowledge on applied species conservation and wildlife management, ecological field research, wildlife intelligence, and handling and analysis of big data. This project matches the Top sector High-tech Systems & Materials, and revolves around 4 distinct phases: selection of potential consortium partners, exploration of the problem, working towards a common action perspective and writing a EU LIFE programme proposal. We will use knowledge co-creation techniques to explore the first three project phases.