In this paper we will describe and present the results of an experiment at the Fontys University of Professional Education in which engineering students work together with students from other disciplines in a multidisciplinary group at the end of their study on a real-life environmental problem outside the university. Since 1994 there has been a possibility for engineering students to graduate in this way, in a multidisciplinary group. First a rough sketch will be given of the background and the educational model. In this sketch attention will be paid to the different role which the student as well as the teacher play in this kind of education. The characteristics of this model will be explained. Then it will be made clear what the results were in the past years with respect to content as well as to the learning of skills. At the end some conclusions will be given.
DOCUMENT
Intensive collaboration between different disciplines is often not without obstacles—healthcare and creative professionals come from different worlds that are not automatically aligned. This study investigates the research question: how do project partners in Create-Health innovation collaborate across boundaries, and how does it add value to interdisciplinary collaboration? It addresses the close collaborations between researchers and practice partners from creative industry and healthcare sector within ten research projects on eHealth innovation. It describes the way that Create-Health collaboration took shape across disciplinary boundaries and provides examples of boundary crossing from the ten projects, with the objective of stimulating learning in the creative and health sectors on creative ways of working on interdisciplinary projects. Findings focus on the way partners from various backgrounds work together across disciplinary boundaries and on the benefits that such collaborations bring for a project.
DOCUMENT
In this empirical study, the one-day project Robot Love Design-a-thon was designed for an interdisciplinary group of preservice teachers (in arts, sciences, and primary education), and evaluated through observations and learner reports. An analysis of the observations and the learner reports showed that having to go through a complete design process in a single day worked well: it facilitated the exchange of ideas and critical discussions between students concerning the project’s socially engaged theme ‘Tenderness and Technology’. In addition, interdisciplinary collaboration emerged as an important learning outcome. All students found working in mixed teams a relevant and educational experience as they could profit from each other’s expertise.
DOCUMENT
Wat dragen creatieve onderzoeksmethodes bij aan vernieuwing binnen de zorg? We onderzoeken dit binnen tien projecten van het Create Health-programma van ZonMw. In deze projecten wordt kennis ontwikkeld over de toegevoegde waarde van creatieve manieren van werken bij e-health innovatie. Informatie over de onderzoeksresultaten is te vinden op de website: husite.nl/creatieve-onderzoeksmethodes en het artikel: CHIWaWA maakt samenwerking in create-health onderzoek inzichtelijk | Hogeschool Utrecht (hu.nl)Doel Het Create Health programma heeft tot doel om bij te dragen aan maatschappelijke uitdagingen rondom gezond en actief ouder worden. CHIWaWA werkt daarbij toe naar een conceptueel model dat manieren van werken in kaart brengt in create health projecten – gekoppeld aan theorie over boundary crossing en research impact – met betrekking tot projectuitkomsten en kennis-, persoonlijke-, en systeemontwikkeling van betrokken actoren. Resultaten onderzoek Kennis die zowel online als offline te raadplegen is, in een boek, in wetenschappelijke artikelen en op een website. Deze kennis bevat: Inzicht in kansen om impact van e-health innovatie in ‘create health’-samenwerking te vergroten; Projectnarratieven met ‘best practices’ voor interdisciplinaire samenwerking waarbij onderzoekers, creatieve industrie en zorgprofessionals betrokken zijn; Guidelines voor ontwikkelaars van e-health applicaties m.b.t. samenwerking met de creatieve industrie; Guidelines voor beleidsmakers m.b.t. het stimuleren van samenwerking tussen zorg en creatieve industrie en het gebruik van creatieve manieren van werken om onderzoek naar de praktijk te krijgen; Aanpak Vanuit een service-dominant logic perspectief wordt bekeken hoe toegepaste kennis en skills worden gedeeld tussen actoren die betrokken zijn bij de verschillende ‘create health’-projecten, wat de meerwaarde daarvan is en wat actoren van die uitwisseling – als proces – leren. De focus ligt op co-creatie van waarde, die door samenwerking en uitwisseling tot stand komt. Door middel van procesonderzoek wordt er toegewerkt naar bijdragen aan theorieontwikkeling op het gebied van boundary crossing en contribution mapping. Resultaten Eindpublicatie: Create Health: Samenwerking tussen zorg, wetenschap en creatieve industrie (2023) Boek: Create Ways of Working. Insights from ten ehealth Innovation research projects (2022) Website www.creatieveonderzoeksmethodes.nl (2022) Bijdragen aan conferenties en symposia Co-design in de anderhalvemetermaatschappij (whitepaper), Dutch Design Week 2020. Download de presentatieslides. Collaborating in complexity. Strategies for interdisciplinary collaboration n design work, Design4Health conference 2020 Grounding Practices. How researchers ground their work in create-health collaborations for designing e-health solutions, Design4Health conference 2020 Seven ways to foster interdisciplinary collaboration in research involving healthcare and creative research disciplines, DementiaLab conference 2019 Posterpresentatie: Health x Design, DementiaLab conference 2019 Meer informatie over het Create Health programma Het ZonMw programma Create Health heeft als doel om bij te dragen aan de maatschappelijke uitdaging rondom gezond en actief ouder worden. Binnen het programma worden activiteiten uitgezet waarbij de samenwerking tussen de creatieve industrie en zorg en welzijn voorop staat. Het gaat hierbij om publiek-private samenwerking (PPS).
In the past decades, we have faced an increase in the digitization, digitalization, and digital transformation of our work and daily life. Breakthroughs of digital technologies in fields such as artificial intelligence, telecommunications, and data science bring solutions for large societal questions but also pose a new challenge: how to equip our (future)workforce with the necessary digital skills, knowledge, and mindset to respond to and drive digital transformation?Developing and supporting our human capital is paramount and failure to do so may leave us behind on individual (digital divide), organizational (economic disadvantages), and societal level (failure in addressing grand societal challenges). Digital transformation necessitates continuous learning approaches and scaffolding of interdisciplinary collaboration and innovation practices that match complex real-world problems. Research and industry have advocated for setting up learning communities as a space in which (future) professionals of different backgrounds can work, learn, and innovate together. However, insights into how and under which circumstances learning communities contribute to accelerated learning and innovation for digital transformation are lacking. In this project, we will study 13 existing and developing learning communities that work on challenges related to digital transformation to understand their working mechanisms. We will develop a wide variety of methods and tools to support learning communities and integrate these in a Learning Communities Incubator. These insights, methods and tools will result in more effective learning communities that will eventually (a) increase the potential of human capital to innovate and (b) accelerate the innovation for digital transformation
Manual labour is an important cornerstone in manufacturing and considering human factors and ergonomics is a crucial field of action from both social and economic perspective. Diverse approaches are available in research and practice, ranging from guidelines, ergonomic assessment sheets over to digitally supported workplace design or hardware oriented support technologies like exoskeletons. However, in the end those technologies, methods and tools put the working task in focus and just aim to make manufacturing “less bad” with reducing ergonomic loads as much as possible. The proposed project “Human Centered Smart Factories: design for wellbeing for future manufacturing” wants to overcome this conventional paradigm and considers a more proactive and future oriented perspective. The underlying vision of the project is a workplace design for wellbeing that makes labor intensive manufacturing not just less bad but aims to provide positive contributions to physiological and mental health of workers. This shall be achieved through a human centered technology approach and utilizing advanced opportunities of smart industry technologies and methods within a cyber physical system setup. Finally, the goal is to develop smart, shape-changing workstations that self-adapt to the unique and personal, physical and cognitive needs of a worker. The workstations are responsive, they interact in real time, and promote dynamic activities and varying physical exertion through understanding the context of work. Consequently, the project follows a clear interdisciplinary approach and brings together disciplines like production engineering, human interaction design, creative design techniques and social impact assessment. Developments take place in an industrial scale test bed at the University of Twente but also within an industrial manufacturing factory. Through the human centered design of adaptive workplaces, the project contributes to a more inclusive and healthier society. This has also positive effects from both national (e.g. relieve of health system) as well as individual company perspective (e.g. less costs due to worker illness, higher motivation and productivity). Even more, the proposal offers new business opportunities through selling products and/or services related to the developed approach. To tap those potentials, an appropriate utilization of the results is a key concern . The involved manufacturing company van Raam will be the prototypical implementation partner and serve as critical proof of concept partner. Given their openness, connections and broad range of processes they are also an ideal role model for further manufacturing companies. ErgoS and Ergo Design are involved as methodological/technological partners that deal with industrial engineering and ergonomic design of workplace on a daily base. Thus, they are crucial to critically reflect wider applicability and innovativeness of the developed solutions. Both companies also serve as multiplicator while utilizing promising technologies and methods in their work. Universities and universities of applied sciences utilize results through scientific publications and as base for further research. They also ensure the transfer to education as an important leverage to inspire and train future engineers towards wellbeing design of workplaces.