It has become a topic at Dutch educational institutes to feel not only responsible for improvement of theoretical and practical skills, but also of 'competences' in a broader sense. The curriculum of the Electrical and Electronic (E&E) Department has been changed enormously in the past decade. Fewer lessons and many more projects were introduced. We have choosen to let the students work on competences especially in the projects they are in. With the introduction of competences and the aid of a student portfolio we have given the tools to the students to improve their competences in a broader way. At the E &E department we introduced two different ways of working on competences. In the first years of their study students choose different roles in our projects every time. We have described all the roles and the related tasks for each specific role. While working on a role, the students indirectly work on different competences. This way of working inforces a broader educational level (a student shouldn t work on things he already knows or is able to handle) and the hitch hiking behaviour is banned out. Students now do take responsibility while contributing to the project teams. Inquiries amongst the students confirm these results. The second way is working on the specific competences in their traineeship and thesis work in the last part of their study. This will be introduced in autumn 2004 in the E&E department. In this paper we will show you how we are implementing the integration of competences, like the E&E department did, for IPD projects as well. This implementation is planned to start in autumn 2004.
Over the last two decades, institutions for higher education such as universities and colleges have rapidly expanded and as a result have experienced profound changes in processes of research and organization. However, the rapid expansion and change has fuelled concerns about issues such as educators' technology professional development. Despite the educational value of emerging technologies in schools, the introduction has not yet enjoyed much success. Effective use of information and communication technologies requires a substantial change in pedagogical practice. Traditional training and learning approaches cannot cope with the rising demand on educators to make use of innovative technologies in their teaching. As a result, educational institutions as well as the public are more and more aware of the need for adequate technology professional development. The focus of this paper is to look at action research as a qualitative research methodology for studying technology professional development in HE in order to improve teaching and learning with ICTs at the tertiary level. The data discussed in this paper have been drawn from a cross institutional setting at Fontys University of Applied Sciences, The Netherlands. The data were collected and analysed according to a qualitative approach.
Nowadays companies need higher educated engineers to develop their competences to enable them to innovate. This innovation competence is seen as a remedy for the minor profitable business they do during the financial crises. Innovation is an element to be developed on the one hand for big companies as well as for small-and-medium sized companies through Europe to overcome this crisis. The higher education can be seen as an institution where youngsters, coming from secondary schools, who choose to learn at higher education to realize their dream, what they like to become in the professional world. The tasks of the Universities of applied Sciences are to prepare these youngsters to become starting engineers doing their job well in the companies. Companies work for a market, trying to manufacture products which customers are willing to pay for. They ask competent employees helping achieving this goal. It is important these companies inform the Universities of applied Sciences in order to modify their educational program in such a way that the graduated engineers are learning the latest knowledge and techniques, which they need to know doing their job well. The Universities of applied Sciences of Oulu (Finland) and Fontys Eindhoven (The Netherlands) are working together to experience possibilities to qualify their students on innovation development in an international setting. In the socalled: ‘Invention Project’, students are motivated to find their own invention, to design it, to prepare this idea for prototyping and to really manufacture it. Organizing the project, special attention is given to communication protocol between students and also between teachers. Students have meetings on Thursday every week through Internet connection with the communication program OPTIMA, which is provided by the Oulu University. Not only the time difference between Finland and the Netherlands is an issue to be organized also effective protocols how to provide each other relevant information and also how to make in an effective way decisions are issues. In the paper the writers will present opinions of students, teachers and also companies in both regions of Oulu and Eindhoven on the effectiveness of this project reaching the goal students get more experienced to set up innovative projects in an international setting. The writers think this is an important and needed competence for nowadays young engineers to be able to create lucrative inventions for companies where they are going to work for. In the paper the writers also present the experiences of the supervising conditions during the project. The information found will lead to successfactors and do’s and don’ts for future projects with international collaboration.
The project’s aim is to foster resilient learning environments, lessen early school leaving, and give European children (ages 4 -6) a good start in their education while providing and advancing technical skills in working with technology that will serve them well in life. For this purpose, the partnership has developed age appropriate ICT animation tools and games - as well as pedagogical framework specific to the transition phase from kindergarten to school.
Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.
The European creative visual industry is undergoing rapid technological development, demanding solid initiatives to maintain a competitive position in the marketplace. AVENUE, a pan-European network of Centres of Vocational Excellence, addresses this need through a collaboration of five independent significant ecosystems, each with a smart specialisation. AVENUE will conduct qualified industry-relevant research to assess, analyse, and conclude on the immediate need for professional training and educational development. The primary objective of AVENUE is to present opportunities for immediate professional and vocational training, while innovating teaching and learning methods in formal education, to empower students and professionals in content creation, entrepreneurship, and innovation, while supporting sustainability and healthy working environments. AVENUE will result in a systematised upgrade of workforce to address the demand for new skills arising from rapid technological development. Additionally, it will transform the formal education within the five participating VETs, making them able to transition from traditional artistic education to delivering skills, mindsets and technological competencies demanded by a commercial market. AVENUE facilitates mobility, networking and introduces a wide range of training formats that enable effective training within and across the five ecosystems. A significant portion of the online training is Open Access, allowing professionals from across Europe to upgrade their skills in various processes and disciplines. The result of AVENUE will be a deep-rooted partnership between five strong ecosystems, collaborating to elevate the European industry. More than 2000 professionals, employees, students, and young talents will benefit from relevant and immediate upgrading of competencies and skills, ensuring that the five European ecosystems remain at the forefront of innovation and competitiveness in the creative visual industry.