Abstract Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has challenged healthcare globally. An acute increase in the number of hospitalized patients has neces‑ sitated a rigorous reorganization of hospital care, thereby creating circumstances that previously have been identifed as facilitating prescribing errors (PEs), e.g. a demanding work environment, a high turnover of doctors, and prescrib‑ ing beyond expertise. Hospitalized COVID-19 patients may be at risk of PEs, potentially resulting in patient harm. We determined the prevalence, severity, and risk factors for PEs in post–COVID-19 patients, hospitalized during the frst wave of COVID-19 in the Netherlands, 3months after discharge. Methods: This prospective observational cohort study recruited patients who visited a post-COVID-19 outpatient clinic of an academic hospital in the Netherlands, 3months after COVID-19 hospitalization, between June 1 and October 1 2020. All patients with appointments were eligible for inclusion. The prevalence and severity of PEs were assessed in a multidisciplinary consensus meeting. Odds ratios (ORs) were calculated by univariate and multivariate analysis to identify independent risk factors for PEs. Results: Ninety-eight patients were included, of whom 92% had ≥1 PE and 8% experienced medication-related harm requiring an immediate change in medication therapy to prevent detoriation. Overall, 68% of all identifed PEs were made during or after the COVID-19 related hospitalization. Multivariate analyses identifed ICU admission (OR 6.08, 95% CI 2.16–17.09) and a medical history of COPD / asthma (OR 5.36, 95% CI 1.34–21.5) as independent risk fac‑ tors for PEs. Conclusions: PEs occurred frequently during the SARS-CoV-2 pandemic. Patients admitted to an ICU during COVID19 hospitalization or who had a medical history of COPD / asthma were at risk of PEs. These risk factors can be used to identify high-risk patients and to implement targeted interventions. Awareness of prescribing safely is crucial to prevent harm in this new patient population.
MULTIFILE
BackgroundHigh-flow nasal oxygen (HFNO) is increasingly used in patients with acute hypoxemic respiratory failure. It is uncertain whether a broadened Berlin definition of acute respiratory distress syndrome (ARDS), in which ARDS can be diagnosed in patients who are not receiving ventilation, results in similar groups of patients receiving HFNO as in patients receiving ventilation.MethodsWe applied a broadened definition of ARDS in a multicenter, observational study in adult critically ill patients with acute hypoxemic respiratory failure due to coronavirus disease 2019 (COVID-19), wherein the requirement for a minimal level of 5 cm H2O PEEP with ventilation is replaced by a minimal level of airflow rate with HFNO, and compared baseline characteristics and outcomes between patients receiving HFNO and patients receiving ventilation. The primary endpoint was ICU mortality. We also compared outcomes in risk for death groups using the PaO2/FiO2 cutoffs as used successfully in the original definition of ARDS. Secondary endpoints were hospital mortality; mortality on days 28 and 90; need for ventilation within 7 days in patients that started with HFNO; the number of days free from HFNO or ventilation; and ICU and hospital length of stay.ResultsOf 728 included patients, 229 patients started with HFNO and 499 patients with ventilation. All patients fulfilled the broadened Berlin definition of ARDS. Patients receiving HFNO had lower disease severity scores and lower PaO2/FiO2 than patients receiving ventilation. ICU mortality was lower in receiving HFNO (22.7 vs 35.6%; p = 0.001). Using PaO2/FiO2 cutoffs for mild, moderate and severe arterial hypoxemia created groups with an ICU mortality of 16.7%, 22.0%, and 23.5% (p = 0.906) versus 19.1%, 37.9% and 41.4% (p = 0.002), in patients receiving HFNO versus patients receiving ventilation, respectively.ConclusionsUsing a broadened definition of ARDS may facilitate an earlier diagnosis of ARDS in patients receiving HFNO; however, ARDS patients receiving HFNO and ARDS patients receiving ventilation have distinct baseline characteristics and mortality rates.Trial registration: The study is registered at ClinicalTrials.gov (identifier NCT04719182).
MULTIFILE
Background: Postoperative rehabilitation after primary total hip arthroplasty (p-THA) differs between the Netherlands and Germany. Aim is to compare clinical effectiveness and to get a first impression of cost effectiveness of Dutch versus German usual care after p-THA. Methods: A transnational prospective controlled observational trial. Clinical effectiveness was assessed with self-reported questionnaires and functional tests. Measurements were taken preoperatively and 4 weeks, 12 weeks, and 6 months postoperatively. For cost effectiveness, long-term economic aspects were assessed from a societal perspective. Results: 124 working-age patients finished the measurements. German usual care leads to a significantly larger proportion (65.6% versus 47.5%) of satisfied patients 12 weeks postoperatively and significantly better self-reported function and Five Times Sit-to-Stand Test (FTSST) results. German usual care is generally 45% more expensive than Dutch usual care, and 20% more expensive for working-age patients. A scenario analysis assumed that German patients work the same number of hours as the Dutch, and that productivity costs are the same. This analysis revealed German care is still more expensive but the difference decreased to 8%. Conclusions: German rehabilitation is clinically advantageous yet more expensive, although comparisons are less straightforward as the socioeconomic context differs between the two countries. Trial registration: The study is registered in the German Registry of Clinical Trials (DRKS00011345, 18/11/2016).
DOCUMENT