The mass adoption of Electric Vehicles (EVs) might raise pressure on the power system, especially during peak hours. Therefore, there is a need for delayed charging. However, to optimize the charging system, the progression of charging from an empty battery to a full battery of the EVs, based on real-world data, needs to be analyzed. Currently, many researchers view this charging profile as a static load and ignore the actual charging behavior during the charging session. However, this study investigates how different factors influence the charging profile of individual EVs based on real-world data of charging sessions in The Netherlands, and thereby enable optimization analysis of EV smart charging schemes.