OBJECTIVE: Juvenile dermatomyositis (DM) is an inflammatory myopathy in which the immune system targets the microvasculature of the skeletal muscle and skin, leading to significant muscle weakness and exercise intolerance, although the precise etiology is unknown. The goal of this study was to investigate the changes in exercise capacity in children with myositis during active and inactive disease periods and to study the responsiveness of exercise parameters.METHODS: Thirteen children with juvenile DM (mean+/-SD age 11.2+/-2.6 years) participated in this study. Patients performed a maximal exercise test using an electronically braked cycle ergometer and respiratory gas analysis system. Exercise parameters were analyzed, including peak oxygen uptake (VO2peak), peak work rate (Wpeak), and ventilatory anaerobic threshold (VAT). All children were tested during an active period of the disease and during a remission period. From these data, 4 different response statistics were calculated.RESULTS: The children performed significantly better during a remission period compared with a period of active disease. Most exercise parameters showed a very large response. The 5 most responsive parameters were Wpeak, Wpeak (percent predicted), oxygen pulse, VO2peak, and power at the VAT.CONCLUSION: We found in our longitudinal study that children with active juvenile DM had significantly reduced exercise parameters compared with a remission period. Moreover, we found that several parameters had very good responsiveness. With previously established validity and reliability, exercise testing has been demonstrated to be an excellent noninvasive instrument for the longitudinal followup of children with myositis.
Introduction: Strenuous physical stress induces a range of physiological responses, the extent depending, among others, on the nature and severity of the exercise, a person’s training level and overall physical resilience. This principle can also be used in an experimental set-up by measuring time-dependent changes in biomarkers for physiological processes. In a previous report, we described the effects of workload delivered on a bicycle ergometer on intestinal functionality. As a follow-up, we here describe an analysis of the kinetics of various other biomarkers. Aim: To analyse the time-dependent changes of 34 markers for different metabolic and immunological processes, comparing four different exercise protocols and a rest protocol. Methods: After determining individual maximum workloads, 15 healthy male participants (20–35 years) started with a rest protocol and subsequently performed (in a cross-over design with 1-week wash-out) four exercise protocols of 1-h duration at different intensities: 70% Wmax in a hydrated and a mildly dehydrated state, 50% Wmax and intermittent 85/55% Wmax in blocks of 2 min. Perceived exertion was monitored using the Borg’ Rating of Perceived Exertion scale. Blood samples were collected both before and during exercise, and at various timepoints up to 24 h afterward. Data was analyzed using a multilevel mixed linear model with multiple test correction. Results: Kinetic changes of various biomarkers were exercise-intensity-dependent. Biomarkers included parameters indicative of metabolic activity (e.g., creatinine, bicarbonate), immunological and hematological functionality (e.g., leukocytes, hemoglobin) and intestinal physiology (citrulline, intestinal fatty acid-binding protein, and zonulin). In general, responses to high intensity exercise of 70% Wmax and intermittent exercise i.e., 55/85% Wmax were more pronounced compared to exercise at 50% Wmax. Conclusion: High (70 and 55/85% Wmax) and moderate (50% Wmax) intensity exercise in a bicycle ergometer test produce different time-dependent changes in a broad range of parameters indicative of metabolic activity, immunological and hematological functionality and intestinal physiology. These parameters may be considered biomarkers of homeostatic resilience. Mild dehydration intensifies these time-related changes. Moderate intensity exercise of 50% Wmax shows sufficient physiological and immunological responses and can be employed to test the health condition of less fit individuals.
In this study, the effect of strapping rowers to their sliding seat on performance during 75 m on-water starting trials was investigated. Well-trained rowers performed 75 m maximum-effort starts using an instrumented single scull equipped with a redesigned sliding seat system, both under normal conditions and while strapped to the sliding seat. Strapping rowers to their sliding seat resulted in a 0.45 s lead after 75 m, corresponding to an increase in average boat velocity of about 2.5%. Corresponding effect sizes were large. No significant changes were observed in general stroke cycle characteristics. No indications of additional boat heaving and pitching under strapped conditions were found. The increase in boat velocity is estimated to correspond to an increase in average mechanical power output during the start of on-water rowing between 5% and 10%, which is substantial but smaller than the 12% increase found in a previous study on ergometer starting. We conclude that, after a very short period of adaptation to the strapped condition, single-scull starting performance is substantially improved when the rower is strapped to the sliding seat.
Although cardiorespiratory fitness (CRF) is being recognized as an important marker of health and functioning, it is currently not routinely assessed in daily clinical practice. There is an urgent need for a simple and feasible exercise test that can validly and reliably estimate an individual’s CRF. The Steep Ramp Test (SRT) is such a practical short-time exercise test (work rate increments of 25 W/10 seconds, so the test phase will only take up to 4 minutes) on a cycle ergometer, that does not require expensive equipment or specialized knowledge, and has been found able to validly and reliably estimate an individual’s CRF. Although the SRT is already frequently used in the Netherlands to evaluate CRF, sex- and age-specific reference values for adults and elderly are lacking thus far, which seriously limits the interpretation of test results.