The Technical Manual for the digital evaluation tool QualiTePE supports users of the QualiTePE tool in creating, conducting and analysing evaluations to record the quality of teaching in physical education. The information on the General Data Protection Regulation (GDPR) instructs users on how to anonymise the data collection of evaluations and which legal bases apply with regard to the collection of personal data. The technical manual for the digital evaluation tool QualiTePE and the information on the General Data Protection Regulation (GDPR) are available in English, German, French, Italian, Spanish, Dutch, Swedish, Slovenian, Czech and Greek.
Although governments are investing heavily in big data analytics, reports show mixed results in terms of performance. Whilst big data analytics capability provided a valuable lens in business and seems useful for the public sector, there is little knowledge of its relationship with governmental performance. This study aims to explain how big data analytics capability led to governmental performance. Using a survey research methodology, an integrated conceptual model is proposed highlighting a comprehensive set of big data analytics resources influencing governmental performance. The conceptual model was developed based on prior literature. Using a PLS-SEM approach, the results strongly support the posited hypotheses. Big data analytics capability has a strong impact on governmental efficiency, effectiveness, and fairness. The findings of this paper confirmed the imperative role of big data analytics capability in governmental performance in the public sector, which earlier studies found in the private sector. This study also validated measures of governmental performance.
MULTIFILE
An example for the development of a potential Minimum Data Set (MDS) within the Urban Vitality (UV) themes ‘Gezond ouder worden / Mensen in Beweging’. The goal is to ensure more uniform collection of outcome measures, based on FAIR principles (ref 1), and to facilitate reuse of data and analyses spanning multiple studies. This prototype MDS is based on The Older Persons and Informal Caregivers Survey Minimum DataSet (TOPICS-MDS) (ref 2), the project FAIR: geen woorden maar data (ref 3) in which we examined 14 UV-studies about ageing and frailty of elderly, and the set of common data elements for rare disease registration (ref 4).
Everyone has the right to participate in society to the best of their ability. This right also applies to people with a visual impairment, in combination with a severe or profound intellectual and possibly motor disability (VISPIMD). However, due to their limitations, for their participation these people are often highly dependent on those around them, such as family members andhealthcare professionals. They determine how people with VISPIMD participate and to what extent. To optimize this support, they must have a good understanding of what people with disabilities can still do with their remaining vision.It is currently difficult to gain insight into the visual abilities of people with disabilities, especially those with VISPIMD. As a professional said, "Everything we can think of or develop to assess the functional vision of this vulnerable group will help improve our understanding and thus our ability to support them. Now, we are more or less guessing about what they can see.Moreover, what little we know about their vision is hard to communicate to other professionals”. Therefore, there is a need for methods that can provide insight into the functional vision of people with VISPIMD, in order to predict their options in daily life situations. This is crucial knowledge to ensure that these people can participate in society to their fullest extent.What makes it so difficult to get this insight at the moment? Visual impairments can be caused by a range of eye or brain disorders and can manifest in various ways. While we understand fairly well how low vision affects a person's abilities on relatively simple visual tasks, it is much more difficult to predict this in more complex dynamic everyday situations such asfinding your way or moving around during daily activities. This is because, among other things, conventional ophthalmic tests provide little information about what people can do with their remaining vision in everyday life (i.e., their functional vision).An additional problem in assessing vision in people with intellectual disabilities is that many conventional tests are difficult to perform or are too fatiguing, resulting in either no or the wrong information. In addition to their visual impairment, there is also a very serious intellectual disability (possibly combined with a motor impairment), which makes it even more complex to assesstheir functional vision. Due to the interplay between their visual, intellectual, and motor disabilities, it is almost impossible to determine whether persons are unable to perform an activity because they do not see it, do not notice it, do not understand it, cannot communicate about it, or are not able to move their head towards the stimulus due to motor disabilities.Although an expert professional can make a reasonable estimate of the functional possibilities through long-term and careful observation, the time and correct measurement data are usually lacking to find out the required information. So far, it is insufficiently clear what people with VZEVMB provoke to see and what they see exactly.Our goal with this project is to improve the understanding of the visual capabilities of people with VISPIMD. This then makes it possible to also improve the support for participation of the target group. We want to achieve this goal by developing and, in pilot form, testing a new combination of measurement and analysis methods - primarily based on eye movement registration -to determine the functional vision of people with VISPIMD. Our goal is to systematically determine what someone is responding to (“what”), where it may be (“where”), and how much time that response will take (“when”). When developing methods, we take the possibilities and preferences of the person in question as a starting point in relation to the technological possibilities.Because existing technological methods were originally developed for a different purpose, this partly requires adaptation to the possibilities of the target group.The concrete end product of our pilot will be a manual with an overview of available technological methods (as well as the methods themselves) for assessing functional vision, linked to the specific characteristics of the target group in the cognitive, motor area: 'Given that a client has this (estimated) combination of limitations (cognitive, motor and attention, time in whichsomeone can concentrate), the order of assessments is as follows:' followed by a description of the methods. We will also report on our findings in a workshop for professionals, a Dutch-language article and at least two scientific articles. This project is executed in the line: “I am seen; with all my strengths and limitations”. During the project, we closely collaborate with relevant stakeholders, i.e. the professionals with specific expertise working with the target group, family members of the persons with VISPIMD, and persons experiencing a visual impairment (‘experience experts’).
Collaborative networks for sustainability are emerging rapidly to address urgent societal challenges. By bringing together organizations with different knowledge bases, resources and capabilities, collaborative networks enhance information exchange, knowledge sharing and learning opportunities to address these complex problems that cannot be solved by organizations individually. Nowhere is this more apparent than in the apparel sector, where examples of collaborative networks for sustainability are plenty, for example Sustainable Apparel Coalition, Zero Discharge Hazardous Chemicals, and the Fair Wear Foundation. Companies like C&A and H&M but also smaller players join these networks to take their social responsibility. Collaborative networks are unlike traditional forms of organizations; they are loosely structured collectives of different, often competing organizations, with dynamic membership and usually lack legal status. However, they do not emerge or organize on their own; they need network orchestrators who manage the network in terms of activities and participants. But network orchestrators face many challenges. They have to balance the interests of diverse companies and deal with tensions that often arise between them, like sharing their innovative knowledge. Orchestrators also have to “sell” the value of the network to potential new participants, who make decisions about which networks to join based on the benefits they expect to get from participating. Network orchestrators often do not know the best way to maintain engagement, commitment and enthusiasm or how to ensure knowledge and resource sharing, especially when competitors are involved. Furthermore, collaborative networks receive funding from grants or subsidies, creating financial uncertainty about its continuity. Raising financing from the private sector is difficult and network orchestrators compete more and more for resources. When networks dissolve or dysfunction (due to a lack of value creation and capture for participants, a lack of financing or a non-functioning business model), the collective value that has been created and accrued over time may be lost. This is problematic given that industrial transformations towards sustainability take many years and durable organizational forms are required to ensure ongoing support for this change. Network orchestration is a new profession. There are no guidelines, handbooks or good practices for how to perform this role, nor is there professional education or a professional association that represents network orchestrators. This is urgently needed as network orchestrators struggle with their role in governing networks so that they create and capture value for participants and ultimately ensure better network performance and survival. This project aims to foster the professionalization of the network orchestrator role by: (a) generating knowledge, developing and testing collaborative network governance models, facilitation tools and collaborative business modeling tools to enable network orchestrators to improve the performance of collaborative networks in terms of collective value creation (network level) and private value capture (network participant level) (b) organizing platform activities for network orchestrators to exchange ideas, best practices and learn from each other, thereby facilitating the formation of a professional identity, standards and community of network orchestrators.
Huntington’s disease (HD) and various spinocerebellar ataxias (SCA) are autosomal dominantly inherited neurodegenerative disorders caused by a CAG repeat expansion in the disease-related gene1. The impact of HD and SCA on families and individuals is enormous and far reaching, as patients typically display first symptoms during midlife. HD is characterized by unwanted choreatic movements, behavioral and psychiatric disturbances and dementia. SCAs are mainly characterized by ataxia but also other symptoms including cognitive deficits, similarly affecting quality of life and leading to disability. These problems worsen as the disease progresses and affected individuals are no longer able to work, drive, or care for themselves. It places an enormous burden on their family and caregivers, and patients will require intensive nursing home care when disease progresses, and lifespan is reduced. Although the clinical and pathological phenotypes are distinct for each CAG repeat expansion disorder, it is thought that similar molecular mechanisms underlie the effect of expanded CAG repeats in different genes. The predicted Age of Onset (AO) for both HD, SCA1 and SCA3 (and 5 other CAG-repeat diseases) is based on the polyQ expansion, but the CAG/polyQ determines the AO only for 50% (see figure below). A large variety on AO is observed, especially for the most common range between 40 and 50 repeats11,12. Large differences in onset, especially in the range 40-50 CAGs not only imply that current individual predictions for AO are imprecise (affecting important life decisions that patients need to make and also hampering assessment of potential onset-delaying intervention) but also do offer optimism that (patient-related) factors exist that can delay the onset of disease.To address both items, we need to generate a better model, based on patient-derived cells that generates parameters that not only mirror the CAG-repeat length dependency of these diseases, but that also better predicts inter-patient variations in disease susceptibility and effectiveness of interventions. Hereto, we will use a staggered project design as explained in 5.1, in which we first will determine which cellular and molecular determinants (referred to as landscapes) in isogenic iPSC models are associated with increased CAG repeat lengths using deep-learning algorithms (DLA) (WP1). Hereto, we will use a well characterized control cell line in which we modify the CAG repeat length in the endogenous ataxin-1, Ataxin-3 and Huntingtin gene from wildtype Q repeats to intermediate to adult onset and juvenile polyQ repeats. We will next expand the model with cells from the 3 (SCA1, SCA3, and HD) existing and new cohorts of early-onset, adult-onset and late-onset/intermediate repeat patients for which, besides accurate AO information, also clinical parameters (MRI scans, liquor markers etc) will be (made) available. This will be used for validation and to fine-tune the molecular landscapes (again using DLA) towards the best prediction of individual patient related clinical markers and AO (WP3). The same models and (most relevant) landscapes will also be used for evaluations of novel mutant protein lowering strategies as will emerge from WP4.This overall development process of landscape prediction is an iterative process that involves (a) data processing (WP5) (b) unsupervised data exploration and dimensionality reduction to find patterns in data and create “labels” for similarity and (c) development of data supervised Deep Learning (DL) models for landscape prediction based on the labels from previous step. Each iteration starts with data that is generated and deployed according to FAIR principles, and the developed deep learning system will be instrumental to connect these WPs. Insights in algorithm sensitivity from the predictive models will form the basis for discussion with field experts on the distinction and phenotypic consequences. While full development of accurate diagnostics might go beyond the timespan of the 5 year project, ideally our final landscapes can be used for new genetic counselling: when somebody is positive for the gene, can we use his/her cells, feed it into the generated cell-based model and better predict the AO and severity? While this will answer questions from clinicians and patient communities, it will also generate new ones, which is why we will study the ethical implications of such improved diagnostics in advance (WP6).