Publinova logo

Zoekresultaten

Producten 180

product

Can the combined use of two screening instruments improve the predictive power of dependency in (instrumental) activities of daily living, mortality and hospitalization in old age?

Background: Due to differences in the definition of frailty, many different screening instruments have been developed. However, the predictive validity of these instruments among community-dwelling older people remains uncertain. Objective: To investigate whether combined (i.e. sequential or parallel) use of available frailty instruments improves the predictive power of dependency in (instrumental) activities of daily living ((I)ADL), mortality and hospitalization. Design, setting and participants: A prospective cohort study with two-year followup was conducted among pre-frail and frail community-dwelling older people in the Netherlands. Measurements: Four combinations of two highly specific frailty instruments (Frailty Phenotype, Frailty Index) and two highly sensitive instruments (Tilburg Frailty Indicator, Groningen Frailty Indicator) were investigated. We calculated sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for all single instruments as well as for the four combinations, sequential and parallel. Results: 2,420 individuals participated (mean age 76.3 ± 6.6 years, 60.5% female) in our study. Sequential use increased the levels of specificity, as expected, whereas the PPV hardly increased. Parallel use increased the levels of sensitivity, although the NPV hardly increased. Conclusions: Applying two frailty instruments sequential or parallel might not be a solution for achieving better predictions of frailty in community-dwelling older people. Our results show that the combination of different screening instruments does not improve predictive validity. However, as this is one of the first studies to investigate the combined use of screening instruments, we recommend further exploration of other combinations of instruments among other study populations.

PDF

11-06-2019
 Can the combined use of two screening instruments improve the predictive power of dependency in (instrumental) activities of daily living, mortality and hospitalization in old age?
product

The ability of four frailty screening instruments to predict mortality, hospitalization and dependency in (instrumental) activities of daily living

The aim of this study was to assess the predictive ability of the frailty phenotype (FP), Groningen Frailty Indicator (GFI), Tilburg Frailty Indicator (TFI) and frailty index (FI) for the outcomes mortality, hospitalization and increase in dependency in (instrumental) activities of daily living ((I)ADL) among older persons. This prospective cohort study with 2-year follow-up included 2420 Dutch community-dwelling older people (65+, mean age 76.3±6.6 years, 39.5% male) who were pre-frail or frail according to the FP. Mortality data were obtained from Statistics Netherlands. All other data were self-reported. Area under the receiver operating characteristic curves (AUC) was calculated for each frailty instrument and outcome measure. The prevalence of frailty, sensitivity and specifcity were calculated using cutoff values proposed by the developers and cutoff values one above and one below the proposed ones (0.05 for FI). All frailty instruments poorly predicted mortality, hospitalization and (I)ADL dependency (AUCs between 0.62–0.65, 0.59–0.63 and 0.60–0.64, respectively). Prevalence estimates of frailty in this population varied between 22.2% (FP) and 64.8% (TFI). The FP and FI showed higher levels of specifcity, whereas sensitivity was higher for the GFI and TFI. Using a different cutoff point considerably changed the prevalence, sensitivity and specifcity. In conclusion, the predictive ability of the FP, GFI, TFI and FI was poor for all outcomes in a population of pre-frail and frail community-dwelling older people. The FP and the FI showed higher values of specifcity, whereas sensitivity was higher for the GFI and TFI.

PDF

18-02-2019
The ability of four frailty screening instruments to predict mortality, hospitalization and dependency in (instrumental) activities of daily living
product

MultipleXLab: A high-throughput portable live-imaging root phenotyping platform using deep learning and computer vision.

Background: Profiling the plant root architecture is vital for selecting resilient crops that can efficiently take up water and nutrients. The high-performance imaging tools available to study root-growth dynamics with the optimal resolution are costly and stationary. In addition, performing nondestructive high-throughput phenotyping to extract the structural and morphological features of roots remains challenging. Results: We developed the MultipleXLab: a modular, mobile, and cost-effective setup to tackle these limitations. The system can continuously monitor thousands of seeds from germination to root development based on a conventional camera attached to a motorized multiaxis-rotational stage and custom-built 3D-printed plate holder with integrated light-emitting diode lighting. We also developed an image segmentation model based on deep learning that allows the users to analyze the data automatically. We tested the MultipleXLab to monitor seed germination and root growth of Arabidopsis developmental, cell cycle, and auxin transport mutants non-invasively at high-throughput and showed that the system provides robust data and allows precise evaluation of germination index and hourly growth rate between mutants. Conclusion: MultipleXLab provides a flexible and user-friendly root phenotyping platform that is an attractive mobile alternative to high-end imaging platforms and stationary growth chambers. It can be used in numerous applications by plant biologists, the seed industry, crop scientists, and breeding companies.

LINK

31-12-2021

Projecten 1

project

CureQ Predict, Delay & Cure polyglutamine(Q) caused neurodegeneration

Huntington’s disease (HD) and various spinocerebellar ataxias (SCA) are autosomal dominantly inherited neurodegenerative disorders caused by a CAG repeat expansion in the disease-related gene1. The impact of HD and SCA on families and individuals is enormous and far reaching, as patients typically display first symptoms during midlife. HD is characterized by unwanted choreatic movements, behavioral and psychiatric disturbances and dementia. SCAs are mainly characterized by ataxia but also other symptoms including cognitive deficits, similarly affecting quality of life and leading to disability. These problems worsen as the disease progresses and affected individuals are no longer able to work, drive, or care for themselves. It places an enormous burden on their family and caregivers, and patients will require intensive nursing home care when disease progresses, and lifespan is reduced. Although the clinical and pathological phenotypes are distinct for each CAG repeat expansion disorder, it is thought that similar molecular mechanisms underlie the effect of expanded CAG repeats in different genes. The predicted Age of Onset (AO) for both HD, SCA1 and SCA3 (and 5 other CAG-repeat diseases) is based on the polyQ expansion, but the CAG/polyQ determines the AO only for 50% (see figure below). A large variety on AO is observed, especially for the most common range between 40 and 50 repeats11,12. Large differences in onset, especially in the range 40-50 CAGs not only imply that current individual predictions for AO are imprecise (affecting important life decisions that patients need to make and also hampering assessment of potential onset-delaying intervention) but also do offer optimism that (patient-related) factors exist that can delay the onset of disease.To address both items, we need to generate a better model, based on patient-derived cells that generates parameters that not only mirror the CAG-repeat length dependency of these diseases, but that also better predicts inter-patient variations in disease susceptibility and effectiveness of interventions. Hereto, we will use a staggered project design as explained in 5.1, in which we first will determine which cellular and molecular determinants (referred to as landscapes) in isogenic iPSC models are associated with increased CAG repeat lengths using deep-learning algorithms (DLA) (WP1). Hereto, we will use a well characterized control cell line in which we modify the CAG repeat length in the endogenous ataxin-1, Ataxin-3 and Huntingtin gene from wildtype Q repeats to intermediate to adult onset and juvenile polyQ repeats. We will next expand the model with cells from the 3 (SCA1, SCA3, and HD) existing and new cohorts of early-onset, adult-onset and late-onset/intermediate repeat patients for which, besides accurate AO information, also clinical parameters (MRI scans, liquor markers etc) will be (made) available. This will be used for validation and to fine-tune the molecular landscapes (again using DLA) towards the best prediction of individual patient related clinical markers and AO (WP3). The same models and (most relevant) landscapes will also be used for evaluations of novel mutant protein lowering strategies as will emerge from WP4.This overall development process of landscape prediction is an iterative process that involves (a) data processing (WP5) (b) unsupervised data exploration and dimensionality reduction to find patterns in data and create “labels” for similarity and (c) development of data supervised Deep Learning (DL) models for landscape prediction based on the labels from previous step. Each iteration starts with data that is generated and deployed according to FAIR principles, and the developed deep learning system will be instrumental to connect these WPs. Insights in algorithm sensitivity from the predictive models will form the basis for discussion with field experts on the distinction and phenotypic consequences. While full development of accurate diagnostics might go beyond the timespan of the 5 year project, ideally our final landscapes can be used for new genetic counselling: when somebody is positive for the gene, can we use his/her cells, feed it into the generated cell-based model and better predict the AO and severity? While this will answer questions from clinicians and patient communities, it will also generate new ones, which is why we will study the ethical implications of such improved diagnostics in advance (WP6).

Lopend