Het is de hoogste tijd dat er meer (internationale) harmonisatie komt op het gebied van de belastingwetgeving voor multinationals.
LINK
From diagnosis to patient scheduling, AI is increasingly being considered across different clinical applications. Despite increasingly powerful clinical AI, uptake into actual clinical workflows remains limited. One of the major challenges is developing appropriate trust with clinicians. In this paper, we investigate trust in clinical AI in a wider perspective beyond user interactions with the AI. We offer several points in the clinical AI development, usage, and monitoring process that can have a significant impact on trust. We argue that the calibration of trust in AI should go beyond explainable AI and focus on the entire process of clinical AI deployment. We illustrate our argument with case studies from practitioners implementing clinical AI in practice to show how trust can be affected by different stages in the deployment cycle.
Users and potential users of the sharing economy need to place a considerable amount of trust in both the person and the platform with which they are dealing. The consequences of transaction partners’ opportunism may be severe, for example damage to goods or endangered personal safety. Trust is, therefore, a key factor in overcoming uncertainty and mitigating risk. However, there is no thorough overview of how trust is developed in this context. To understand how the trust of users in the sharing economy is influenced, we performed a systematic literature review. After screening, 45 articles were included in a qualitative synthesis in which the results were grouped according to a well‐established trust typology. The results show various antecedents of trust in the sharing economy (e.g. reputation, trust in the platform, and interaction experience) related to multiple entities (i.e. seller, buyer, platform, interpersonal, and transaction). Trust in this economy is often reduced to the use of reputation systems alone. However, our study suggests that trust is much more complex than that and extends beyond reputation. Furthermore, our review clearly shows that research on trust in the sharing economy is still scarce and thus more research is needed to understand how trust is established in this context. Our review is the first that brings together antecedents of trust in online peer‐to‐peer transactions and integrates these findings within an existing framework. Additionally, the study suggests directions for future research in order to advance the understanding of trust in the sharing economy.
LINK
De technische en economische levensduur van auto’s verschilt. Een goed onderhouden auto met dieselmotor uit het bouwjaar 2000 kan technisch perfect functioneren. De economische levensduur van diezelfde auto is echter beperkt bij introductie van strenge milieuzones. Bij de introductie en verplichtstelling van geavanceerde rijtaakondersteunende systemen (ADAS) zien we iets soortgelijks. Hoewel de auto technisch gezien goed functioneert kunnen verouderde software, algorithmes en sensoren leiden tot een beperkte levensduur van de gehele auto. Voorbeelden: - Jeep gehackt: verouderde veiligheidsprotocollen in de software en hardware beperkten de economische levensduur. - Actieve Cruise Control: sensoren/radars van verouderde systemen leiden tot beperkte functionaliteit en gebruikersacceptatie. - Tesla: bij bestaande auto’s worden verouderde sensoren uitgeschakeld waardoor functies uitvallen. In 2019 heeft de EU een verplichting opgelegd aan automobielfabrikanten om 20 nieuwe ADAS in te bouwen in nieuw te ontwikkelen auto’s, ongeacht prijsklasse. De mate waarin deze ADAS de economische levensduur van de auto beperkt is echter nog onvoldoende onderzocht. In deze KIEM wordt dit onderzocht en wordt tevens de parallel getrokken met de mobiele telefonie; beide maken gebruik van moderne sensoren en software. We vergelijken ontwerpeisen van telefoons (levensduur van gemiddeld 2,5 jaar) met de eisen aan moderne ADAS met dezelfde sensoren (levensduur tot 20 jaar). De centrale vraag luidt daarom: Wat is de mogelijke impact van veroudering van ADAS op de economische levensduur van voertuigen en welke lessen kunnen we leren uit de onderliggende ontwerpprincipes van ADAS en Smartphones? De vraag wordt beantwoord door (i) literatuuronderzoek naar de veroudering van ADAS (ii) Interviews met ontwerpers van ADAS, leveranciers van retro-fit systemen en ontwerpers van mobiele telefoons en (iii) vergelijkend rij-onderzoek naar het functioneren van ADAS in auto’s van verschillende leeftijd en prijsklassen.
De gezondheidszorg kampt met personeelstekorten en lange wachtlijsten, wat de zorgkwaliteit voor patiënten ernstig treft. De toenemende vergrijzing van de bevolking en een toenemend tekort aan geschoold personeel verergeren deze problemen. Hierdoor komen zowel zorgverleners als mantelzorgers onder grote druk te staan [1]. In dit project wordt met behulp van AI-onderzoek gedaan naar de haalbaarheid van het automatisch detecteren van de gesteldheid van zorgbehoevenden. Dit biedt mogelijkheden om de druk op zorgverleners en mantelzorgers te verlichten door taken te automatiseren en hen te ondersteunen bij het identificeren van de behoeften van de patiënten. De huidige tekorten in de zorg zijn verontrustend en daarom niet houdbaar voor de kwaliteit van de zorg. Automatisering is daarom essentieel om de zorgkwaliteit te waarborgen. Het consortium bestaat uit zorginstelling De Zijlen, Valtes en het NHL Stenden Lectoraat Computer Vision & Data Science. Vanuit De Zijlen en Valtes is de vraag ontstaan voor de automatische detectie van de gesteldheid van zorgbehoevenden. Gezamenlijk wordt de technische haalbaarheid onderzocht om de business-case te ondersteunen. Daarnaast is het doel van dit project om met een proof-of-concept een breder netwerk van belangenorganisaties, ontwikkelaars en eindgebruikers aan te spreken. Er wordt gewerkt in een multidisciplinair team van studenten, docent-onderzoekers, lectoren, ontwikkelaar en potentiële eindgebruikers.
Dit promotieproject richt zich op Conversational Agents en hun rol in de dienstverlening in het publieke domein. Geautomatiseerde vormen van communicatie komen steeds vaker voor. Dit roept vragen op over het opbouwen van relaties, vertrouwen, vormen van servicegebruik en data-ethiek.Doel De interdisciplinaire studie onderzoekt kritisch hoe de interacties van burgers met Conversational Agents het vertrouwen in publieke organisaties vormgeven. Resultaten Inzichten over huidig en eerder onderzoek naar vertrouwen en Conversational Agents door middel van een systematisch literatuuronderzoek Identificatie van ‘trust markers’ in gebruikersinteracties met bots Inzichten over opvattingen en reacties van burgers op verschillende gradaties van antropomorfisering in CA-design Begrip over de rol van Conversational Agents in de citizen journey Looptijd 01 januari 2023 - 01 januari 2027 Aanpak Er zullen vier onderzoeken worden uitgevoerd, afgestemd op dimensies van vertrouwen. Deze studies gaan over concepten van vertrouwen, identificeren ‘trust markers’ in mens-bot-dialogen, voeren experimenten uit rond mens-bot-relaties en onderzoeken de rol van CA's in de burgerreis door digitale diensten. Afstudeerproject Chatbots en Voice assistants Tijdens het onderzoeksproject Bots of Trust (BOT) zijn er verschillende mogelijkheden om met studenten samen te werken aan een gerelateerd vraagstuk zoals chatbots en/of voice assistants en hoe deze vorm geven aan vertrouwen in verschillende sectoren.