The Heating Ventilation and Air Conditioning (HVAC) sector is responsible for a large part of the total worldwide energy consumption, a significant part of which is caused by incorrect operation of controls and maintenance. HVAC systems are becoming increasingly complex, especially due to multi-commodity energy sources, and as a result, the chance of failures in systems and controls will increase. Therefore, systems that diagnose energy performance are of paramount importance. However, despite much research on Fault Detection and Diagnosis (FDD) methods for HVAC systems, they are rarely applied. One major reason is that proposed methods are different from the approaches taken by HVAC designers who employ process and instrumentation diagrams (P&IDs). This led to the following main research question: Which FDD architecture is suitable for HVAC systems in general to support the set up and implementation of FDD methods, including energy performance diagnosis? First, an energy performance FDD architecture based on information embedded in P&IDs was elaborated. The new FDD method, called the 4S3F method, combines systems theory with data analysis. In the 4S3F method, the detection and diagnosis phases are separated. The symptoms and faults are classified into 4 types of symptoms (deviations from balance equations, operating states (OS) and energy performance (EP), and additional information) and 3 types of faults (component, control and model faults). Second, the 4S3F method has been tested in four case studies. In the first case study, the symptom detection part was tested using historical Building Management System (BMS) data for a whole year: the combined heat and power plant of the THUAS (The Hague University of Applied Sciences) building in Delft, including an aquifer thermal energy storage (ATES) system, a heat pump, a gas boiler and hot and cold water hydronic systems. This case study showed that balance, EP and OS symptoms can be extracted from the P&ID and the presence of symptoms detected. In the second case study, a proof of principle of the fault diagnosis part of the 4S3F method was successfully performed on the same HVAC system extracting possible component and control faults from the P&ID. A Bayesian Network diagnostic, which mimics the way of diagnosis by HVAC engineers, was applied to identify the probability of all possible faults by interpreting the symptoms. The diagnostic Bayesian network (DBN) was set up in accordance with the P&ID, i.e., with the same structure. Energy savings from fault corrections were estimated to be up to 25% of the primary energy consumption, while the HVAC system was initially considered to have an excellent performance. In the third case study, a demand-driven ventilation system (DCV) was analysed. The analysis showed that the 4S3F method works also to identify faults on an air ventilation system.
We are currently in a transition moving from a linear economy grounded on economic value maximization based on material transformation to a circular economy. Core of this transition is organising value preservation from various yet interlinked perspectives. The underlying fundamental shift is to move away from mere financial value maximization towards multiple value creation (WCED, 1987; Jonker, 2014; Raworth, 2017). This implies moving from mere economic value creation, to simultaneously and in a balanced way creating ecological and social value. A parallel development supporting this transition can be observed in accounting & control. Elkington (1994) introduced the triple bottom line (TBL) concept, referring to the economic, ecological and social impact of companies. The TBL should be seen more as a conceptual way of thinking, rather than a practical innovative accounting tool to monitor and control sustainable value (Rambaud & Richard, 2015). However, it has inspired accounting & control practitioners to develop accounting tools that not only aim at economic value (‘single capital’ accounting) but also at multiple forms of capital (‘multi capital’ accounting or integrated reporting). This has led to a variety of integrated reporting platforms such as Global Reporting Initiative (GRI), International Integrated Reporting Framework (IIRC), Dow Jones Sustainable Indexes (DJSI), True Costing, Reporting 3.0, etc. These integrated reporting platforms and corresponding accounting concepts, can be seen as a fundament for management control systems focussing on multiple value creation. This leads to the following research question: How are management control systems designed in practice to drive multiple value creation?
MULTIFILE
In the wake of neo-liberal informed global trends to set performance standards and intensify accountability, the Dutch government aimed for ‘raising standards for basic skills’. While the implementation of literacy standards was hardly noticed, the introduction of numeracy standards caused a major backlash in secondary schools, which ended in a failed introduction of a high stakes test. How can these major differences be explained? Inspired by Foucault’s governmentality concept a theoretical framework is developed to allow for detailed empirical research on steering processes in complex systems in which many actors are involved in educational decision-making. A mixed-methods multiple embedded case-study was conducted comprising nine school boards and fifteen secondary schools. Analyses unveil processes of responsibilisation, normalisation and emerging dividing practices. Literacy standards reinforced responsibilities of Dutch language teachers; for numeracy, school leadership created entirely new roles and responsibilities for teachers. Literacy standards were incorporated in an already used instrument which made implementation both subtle and inevitable. For numeracy, schools distinguished students by risk of not passing the new test affirming the disciplinary nature of schools in the process. While little changed to address teachers main concerns about students’ literacy skills, the failed introduction of the numeracy test usurped most resources.