BackgroundScientific software incorporates models that capture fundamental domain knowledge. This software is becoming increasingly more relevant as an instrument for food research. However, scientific software is currently hardly shared among and (re-)used by stakeholders in the food domain, which hampers effective dissemination of knowledge, i.e. knowledge transfer.Scope and approachThis paper reviews selected approaches, best practices, hurdles and limitations regarding knowledge transfer via software and the mathematical models embedded in it to provide points of reference for the food community.Key findings and conclusionsThe paper focusses on three aspects. Firstly, the publication of digital objects on the web, which offers valorisation software as a scientific asset. Secondly, building transferrable software as way to share knowledge through collaboration with experts and stakeholders. Thirdly, developing food engineers' modelling skills through the use of food models and software in education and training.
The objective of this study was to generate groups of agri-food producers with high affinity in relation to their sustainable waste management practices. The aim of conforming these groups is the development of synergies, knowledge management, and policy- and decision-making by diverse stakeholders. A survey was conducted among the most experienced farmers in the region of Nuevo Urecho, Michoacán, Mexico, and a total of eight variables relating to sustainable waste management practices, agricultural food loss, and the waste generated at each stage of the production process were examined. The retrieved data were treated using the maximum inverse correspondence algorithm and the Galois Lattice was applied to generate clusters of highly affine producers. The results indicate 163 possible elements that generate the power set, and 31 maximum inverse correspondences were obtained. At this point, it is possible to determine the maximum number of relationships, called affinities. In general, all 15 considered farmers shared the measure of revaluation of food waste and 90% of the farmers shared affinity in measures related to ecological care and the proper management of waste. A practical implication of this study is the conformation of highly affine clusters for both policy and strategic decision-making.
LINK
Abstract Business Process Management (BPM) is an important discipline for organizations to manage their business processes. Research shows that higher BPM-maturity leads to better process performance. However, contextual factors such as culture seem to influence this relationship. The purpose of this paper is to investigate the role of national culture on the relationship between BPM-maturity and process performance. A multiple linear regression analysis is performed based on data from six different countries within Europe. Although the results show a significant relationship between BPM-maturity and process performance, no significant moderation effect of national culture has been found. The cultural dimension long term orientation shows a weak negative correlation with both BPM-maturity and process performance. Through a post-hoc moderation analysis on each dimension of BPM-maturity, we further find that long term orientation negatively moderates the relationship between process improvement and process performance. Three other moderation effects are also discovered. The results of this study contribute to insights into the role of culture in the field of BPM.
MULTIFILE
Human kind has a major impact on the state of life on Earth, mainly caused by habitat destruction, fragmentation and pollution related to agricultural land use and industrialization. Biodiversity is dominated by insects (~50%). Insects are vital for ecosystems through ecosystem engineering and controlling properties, such as soil formation and nutrient cycling, pollination, and in food webs as prey or controlling predator or parasite. Reducing insect diversity reduces resilience of ecosystems and increases risks of non-performance in soil fertility, pollination and pest suppression. Insects are under threat. Worldwide 41 % of insect species are in decline, 33% species threatened with extinction, and a co-occurring insect biomass loss of 2.5% per year. In Germany, insect biomass in natural areas surrounded by agriculture was reduced by 76% in 27 years. Nature inclusive agriculture and agri-environmental schemes aim to mitigate these kinds of effects. Protection measures need success indicators. Insects are excellent for biodiversity assessments, even with small landscape adaptations. Measuring insect biodiversity however is not easy. We aim to use new automated recognition techniques by machine learning with neural networks, to produce algorithms for fast and insightful insect diversity indexes. Biodiversity can be measured by indicative species (groups). We use three groups: 1) Carabid beetles (are top predators); 2) Moths (relation with host plants); 3) Flying insects (multiple functions in ecosystems, e.g. parasitism). The project wants to design user-friendly farmer/citizen science biodiversity measurements with machine learning, and use these in comparative research in 3 real life cases as proof of concept: 1) effects of agriculture on insects in hedgerows, 2) effects of different commercial crop production systems on insects, 3) effects of flower richness in crops and grassland on insects, all measured with natural reference situations