Aim: The aim of this study was to describe the experience with commercially available activity trackers embedded in the physiotherapy treatment of patients with a chronic disease. Methods: In a qualitative study, 29 participants with a chronic disease participated. They wore an activity tracker for two to eight weeks. Data were collected using 23 interviews and discussion with 6 participants. A framework analysis was used to analyze the data. Results: The framework analysis resulted in seven categories: purchase, instruction, characteristics, correct functioning, sharing data, privacy, use, and interest in feedback. The standard goal of the activity trackers was experienced as too high, however the tracker still motivated them to be more active. Participants would have liked more guidance from their physiotherapists because they experienced the trackers as complex. Participants experienced some technical failures, are willing to share data with their physiotherapist and, want to spend a maximum of €50,-. Conclusion: The developed framework gives insight into all important concepts from the experiences reported by patients with a chronic disease and can be used to guide further research and practice. Patients with a chronic disease were positive regarding activity trackers in general. When embedded in physiotherapy, more attention should be paid to the integration in treatment.
Electromagnetic articulography (EMA) is one of the instrumental phonetic research methods used for recording and assessing articulatory movements. Usually, articulographic data are analysed together with standard audio recordings. This paper, however, demonstrates how coupling the articulograph with devices providing other types of information may be used in more advanced speech research. A novel measurement system is presented that consists of the AG 500 electromagnetic articulograph, a 16-channel microphone array with a dedicated audio recorder and a video module consisting of 3 high-speed cameras. It is argued that synchronization of all these devices allows for comparative analyses of results obtained with the three components. To complement the description of the system, the article presents innovative data analysis techniques developed by the authors as well as preliminary results of the system’s accuracy.
With summaries in Dutch, Esperanto and English. DOI: 10.4233/uuid:d7132920-346e-47c6-b754-00dc5672b437 "The subject of this study is deformation analysis of the earth's surface (or part of it) and spatial objects on, above or below it. Such analyses are needed in many domains of society. Geodetic deformation analysis uses various types of geodetic measurements to substantiate statements about changes in geometric positions.Professional practice, e.g. in the Netherlands, regularly applies methods for geodetic deformation analysis that have shortcomings, e.g. because the methods apply substandard analysis models or defective testing methods. These shortcomings hamper communication about the results of deformation analyses with the various parties involved. To improve communication solid analysis models and a common language have to be used, which requires standardisation.Operational demands for geodetic deformation analysis are the reason to formulate in this study seven characteristic elements that a solid analysis model needs to possess. Such a model can handle time series of several epochs. It analyses only size and form, not position and orientation of the reference system; and datum points may be under influence of deformation. The geodetic and physical models are combined in one adjustment model. Full use is made of available stochastic information. Statistical testing and computation of minimal detectable deformations is incorporated. Solution methods can handle rank deficient matrices (both model matrix and cofactor matrix). And, finally, a search for the best hypothesis/model is implemented. Because a geodetic deformation analysis model with all seven elements does not exist, this study develops such a model.For effective standardisation geodetic deformation analysis models need: practical key performance indicators; a clear procedure for using the model; and the possibility to graphically visualise the estimated deformations."