From the article This paper describes a joint effort by two educational and scientific institutes, the HU University of Applied Sciences and Utrecht University, in designing a BPM course that not only transfers theoretical knowledge but lets students also experience real life BPM-systems and implementation issues. We also describe the implementation of the developed module with an indication of its success: it is now running for the fifth time, and although there continue to be points for improvement, over the years several scientific papers in the BPM domain resulted from the course, as well as a reasonable amount of students started their final thesis project in the BPM-domain.
MULTIFILE
Aims and objectives: To describe the process of implementing evidence-based practice (EBP) in a clinical nursing setting. Background: EBP has become a major issue in nursing, it is insufficiently integrated in daily practice and its implementation is complex. Design: Participatory action research. Method: The main participants were nurses working in a lung unit of a rural hospital. A multi-method process of data collection was used during the observing, reflecting, planning and acting phases. Data were continuously gathered during a 24-month period from 2010 to 2012, and analysed using an interpretive constant comparative approach. Patients were consulted to incorporate their perspective. Results: A best-practice mode of working was prevalent on the ward. The main barriers to the implementation of EBP were that nurses had little knowledge of EBP and a rather negative attitude towards it, and that their English reading proficiency was poor. The main facilitators were that nurses wanted to deliver high-quality care and were enthusiastic and open to innovation. Implementation strategies included a tailored interactive outreach training and the development and implementation of an evidence-based discharge protocol. The academic model of EBP was adapted. Nurses worked according to the EBP discharge protocol but barely recorded their activities. Nurses favourably evaluated the participatory action research process. Conclusions: Action research provides an opportunity to empower nurses and to tailor EBP to the practice context. Applying and implementing EBP is difficult for front-line nurses with limited EBP competencies. Relevance to clinical practice: Adaptation of the academic model of EBP to a more pragmatic approach seems necessary to introduce EBP into clinical practice. The use of scientific evidence can be facilitated by using pre-appraised evidence. For clinical practice, it seems relevant to integrate scientific evidence with clinical expertise and patient values in nurses’ clinical decision making at the individual patient level.
It has become a topic at Dutch educational institutes to feel not only responsible for improvement of theoretical and practical skills, but also of 'competences' in a broader sense. The curriculum of the Electrical and Electronic (E&E) Department has been changed enormously in the past decade. Fewer lessons and many more projects were introduced. We have choosen to let the students work on competences especially in the projects they are in. With the introduction of competences and the aid of a student portfolio we have given the tools to the students to improve their competences in a broader way. At the E &E department we introduced two different ways of working on competences. In the first years of their study students choose different roles in our projects every time. We have described all the roles and the related tasks for each specific role. While working on a role, the students indirectly work on different competences. This way of working inforces a broader educational level (a student shouldn t work on things he already knows or is able to handle) and the hitch hiking behaviour is banned out. Students now do take responsibility while contributing to the project teams. Inquiries amongst the students confirm these results. The second way is working on the specific competences in their traineeship and thesis work in the last part of their study. This will be introduced in autumn 2004 in the E&E department. In this paper we will show you how we are implementing the integration of competences, like the E&E department did, for IPD projects as well. This implementation is planned to start in autumn 2004.
Horse riding falls under the “Sport for Life” disciplines, where a long-term equestrian development can provide a clear pathway of developmental stages to help individuals, inclusive of those with a disability, to pursue their goals in sport and physical activity, providing long-term health benefits. However, the biomechanical interaction between horse and (disabled) rider is not wholly understood, leaving challenges and opportunities for the horse riding sport. Therefore, the purpose of this KIEM project is to start an interdisciplinary collaboration between parties interested in integrating existing knowledge on horse and (disabled) rider interaction with any novel insights to be gained from analysing recently collected sensor data using the EquiMoves™ system. EquiMoves is based on the state-of-the-art inertial- and orientational-sensor system ProMove-mini from Inertia Technology B.V., a partner in this proposal. On the basis of analysing previously collected data, machine learning algorithms will be selected for implementation in existing or modified EquiMoves sensor hardware and software solutions. Target applications and follow-ups include: - Improving horse and (disabled) rider interaction for riders of all skill levels; - Objective evidence-based classification system for competitive grading of disabled riders in Para Dressage events; - Identifying biomechanical irregularities for detecting and/or preventing injuries of horses. Topic-wise, the project is connected to “Smart Technologies and Materials”, “High Tech Systems & Materials” and “Digital key technologies”. The core consortium of Saxion University of Applied Sciences, Rosmark Consultancy and Inertia Technology will receive feedback to project progress and outcomes from a panel of international experts (Utrecht University, Sport Horse Health Plan, University of Central Lancashire, Swedish University of Agricultural Sciences), combining a strong mix of expertise on horse and rider biomechanics, veterinary medicine, sensor hardware, data analysis and AI/machine learning algorithm development and implementation, all together presenting a solid collaborative base for derived RAAK-mkb, -publiek and/or -PRO follow-up projects.
Goal: In 2030 the availability of high quality and fit-for-purpose recycled plastics has been significantly increased by implementation of InReP’s main result: Development of technologies in sorting, mechanical and chemical recycling that make high quality recycled plastics available for the two dominating polymer types; polyolefins (PE/PP) and PET. Results: Our integrated approach in the recycling of plastics will result in systemic (R1) and technological solutions for sorting & washing of plastic waste (R2), mechanical (R3) and chemical recycling (R4, R6) and upcycling (R5, R7) of polyolefins (PE & PP) and polyesters (PET). The obtained knowledge on the production of high quality recycled plastics can easily be transferred to the recycling of other plastic waste streams. Furthermore, our project aims to progress several processes (optimized sorting and washing, mechanical recycling of PP/PE, glycolysis of PET, naphtha from PP/PE and preparation of valuable monomers from PP/PET) to prototype and/or improved performance at existing pilot facilities. Our initiative will boost the attractiveness of recycling, contribute to the circular transition (technical, social, economic), increase the competitiveness of companies involved within the consortium and encourage academic research and education within this field.
Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.