Gamma-band neuronal synchronization during sentence-level language comprehension has previously been linked with semantic unification. Here, we attempt to further narrow down the functional significance of gamma during language comprehension, by distinguishing between two aspects of semantic unification: successful integration of word meaning into the sentence context, and prediction of upcoming words. We computed eventrelated potentials (ERPs) and frequency band-specific electroencephalographic (EEG) power changes while participants read sentences that contained a critical word (CW) that was (1) both semantically congruent and predictable (high cloze, HC), (2) semantically congruent but unpredictable (low cloze, LC), or (3) semantically incongruent (and therefore also unpredictable; semantic violation, SV). The ERP analysis showed the expected parametric N400 modulation (HC < LC < SV). The time-frequency analysis showed qualitatively different results. In the gamma-frequency range, we observed a power increase in response to the CW in the HC condition, but not in the LC and the SV conditions. Additionally, in the theta frequency range we observed a power increase in the SV condition only. Our data provide evidence that gamma power increases are related to the predictability of an upcoming word based on the preceding sentence context, rather than to the integration of the incoming word's semantics into the preceding context. Further, our theta band data are compatible with the notion that theta band synchronization in sentence comprehension might be related to the detection of an error in the language input.
MULTIFILE
ion of verb agreement by hearing learners of a sign language. During a 2-year period, 14 novel learners of Sign Language of the Netherlands (NGT) with a spoken language background performed an elicitation task 15 times. Seven deaf native signers and NGT teachers performed the same task to serve as a benchmark group. The results obtained show that for some learners, the verb agreement system of NGT was difficult to master, despite numerous examples in the input. As compared to the benchmark group, learners tended to omit agreement markers on verbs that could be modified, did not always correctly use established locations associated with discourse referents, and made characteristic errors with respect to properties that are important in the expression of agreement (movement and orientation). The outcomes of the study are of value to practitioners in the field, as they are informative with regard to the nature of the learning process during the first stages of learning a sign language.
Adverse Outcome Pathways (AOPs) are conceptual frameworks that tie an initial perturbation (molecular initiat- ing event) to a phenotypic toxicological manifestation (adverse outcome), through a series of steps (key events). They provide therefore a standardized way to map and organize toxicological mechanistic information. As such, AOPs inform on key events underlying toxicity, thus supporting the development of New Approach Methodologies (NAMs), which aim to reduce the use of animal testing for toxicology purposes. However, the establishment of a novel AOP relies on the gathering of multiple streams of evidence and infor- mation, from available literature to knowledge databases. Often, this information is in the form of free text, also called unstructured text, which is not immediately digestible by a computer. This information is thus both tedious and increasingly time-consuming to process manually with the growing volume of data available. The advance- ment of machine learning provides alternative solutions to this challenge. To extract and organize information from relevant sources, it seems valuable to employ deep learning Natural Language Processing techniques. We review here some of the recent progress in the NLP field, and show how these techniques have already demonstrated value in the biomedical and toxicology areas. We also propose an approach to efficiently and reliably extract and combine relevant toxicological information from text. This data can be used to map underlying mechanisms that lead to toxicological effects and start building quantitative models, in particular AOPs, ultimately allowing animal-free human-based hazard and risk assessment.