In the past 5 years Electric Car use has grown rapidly, almost doubling each year. To provide adequate charging infrastructure it is necessary to model the demand. In this paper we model the distribution of charging demand in the city of Amsterdam using a Cross-Nested Logit Model with socio-demographic statistics of neighborhoods and charging history of vehicles. Models are obtained for three user-types: regular users, electric car-share participants and taxis. Regular users are later split into three subgroups based on their charging behaviour throughout the day: Visitors, Commuters and Residents
Plasma treatment is a commonly used technology to modify the wetting behavior of polymer films in the production process for, e.g., printed electronics. As the effect of the plasma treatment decreases in time, the so-called "aging effect", it is important to gain knowledge on how this effect impacts the wetting behavior of commonly used polymers in order to be able to optimize production processing times. In this article the authors study the wetting behavior of polyethylene naphthalate (PEN), polyethylene terephthalate (PET), polycarbonate (PC), fluorinated ethylene propylene (FEP) and polyimide (PI) polymer films after plasma treatment in time. The plasma treatment was performed using a novel maskless DBD plasma patterning technology, i.e., Plasma Printing, at atmospheric pressure under nitrogen atmosphere. After treatment, the samples were stored at room temperature at 30%-40% relative humidity for up to one month. An increase in wettability is measured for all polymers directly after Plasma Printing. The major increase in wettability occurs after a small number of treatments, e.g., low energy density. More treatments show no further beneficial gain in wettability. The increase in wettability is mainly due to an increase in the polar part of the surface energy, which can probably be attributed to chemical modification of the surface of the investigated polymers. With the exception of FEP, during storage of the plasma treated polymers, the wettability partially declines in the first five days, after which it stabilizes to approximately 50% of its original state. The wettability of FEP shows little decline during storage. As the storage time between production steps is mostly under two days, Plasma Printing shows good promise as a pre-treatment step in the production of printed electronics. d c 2013 Society for Imaging Science and Technology.
LINK
This research presents a case study exploring the potential for demand side flexibility at a cluster of university buildings. The study investigates the potential of a collection of various electrical devices, excluding heating and cooling systems. With increasing penetration of renewable electricity sources and the phasing out of dispatchable fossil sources, matching grid generation with grid demand will become difficult using traditional grid management methods alone. Additionally, grid congestion is a pressing problem. Demand side management in buildings may contribute to a solution to these problems. Currently demand response is, however, not yet exploited at scale. In part, this is because it is unclear how this flexibility can be translated into successful business models, or whether this is possible under the current market regime. This research gives insight into the potential value of energy demand flexibility in reducing energy costs and increasing the match between electricity demand and purchased renewable electricity. An inventory is made of on-site electrical devices that offer load flexibility and the magnitude and duration of load shifting is estimated for each group of devices. A demand response simulation model is then developed that represents the complete collection of flexible devices. This model, addresses demand response as a ‘distribute candy’ problem and finds the optimal time-of-use for shiftable electricity demand whilst respecting the flexibility constraints of the electrical devices. The value of demand flexibility at the building cluster is then assessed using this simulation model, measured electricity consumption, and data regarding the availability of purchased renewables and day-ahead spot prices. This research concludes that coordinated demand response of large variety of devices at the building cluster level can improve energy matching by 0.6-1.5% and reduce spot market energy cost by 0.4-3.2%.