Residential public charging points are shared by multiple electric vehicle drivers, often neighbours. Therefore, charging behaviour is embedded in a social context. Behaviours that affect, or are influenced by, other publiccharging point users have been sparsely studied and lack an overarching and comprehensive definition. Consequently, very few measures are applied in practice to influence charging behaviour. We aim to classify and define the social dimension of charging behaviour from a social-psychological perspective and, using a behaviour change framework, identify and analyse the measures to influence this behaviour. We interviewed 15 experts onresidential public charging infrastructure in the Netherlands. We identified 17 charging behaviours rooted in interpersonal interactions between individuals and interactions between individuals and technology. These behaviours can be categorised into prosocial and antisocial charging behaviours. Prosocial charging behaviour provides or enhances the opportunity for other users to charge their vehicle at the public charging point, for instance by charging only when necessary. Antisocial charging behaviour prevents or diminishes this opportunity, for instance by occupying the charging point after charging, intentionally or unintentionally. We thenidentified 23 measures to influence antisocial and prosocial charging behaviours. These measures can influence behaviour through human–technology interaction, such as providing charging etiquettes to new electric vehicle drivers or charging idle fees, and interpersonal interaction, such as social pressure from other charging point users or facilitating social interactions to exchange requests. Our approach advocates for more attention to the social dimension of charging behaviour.
In this study we use aggregated weighted scores of environmental effects to study environmental influences on well-being and happiness. To this end, we split a sample of Netherlands Twin Register (NTR) participants into a training (N =4857) and test (N =2077) sample. In the training sample, we use elastic net regression to estimate effect sizes for associations between life satisfaction and two sets of environmental variables: one based on self- report socioenvironmental data, and one based on objective physical environmental data. Based on these effect sizes, we create two poly-environmental scores (PES-S and PES-O, for self-reports and objective data respectively). In the test sample, we perform association analyses between different measures of well-being and the two PESs. We find that the PES-S explains ~36% of the variance in well-being, while the PES-O does not significantly contribute to the model. Variance in other well-being measures (i.e., different life satisfaction domains, subjective happiness, quality of life, flourishing, psychological well-being, self-rated health, depressive problems, and loneliness) are explained to varying extents by the PESs, ranging from 6.36% (self-rated health) to 36.66% (loneliness). These predictive values did not change during the COVID-19 pandemic (N =3214). Validating the PES-S in the UK biobank (N =40,614), we find that the UK biobank PES-S explains about ~12% of the variance in happiness. Lastly, we examine if there is any indication for gene-environment correlation (rGE), the phenomenon where one’s genetic predisposition influences exposure to the environment, by associating the PESs with polygenic scores (PGS) in a sample of Netherlands Twin Register (NTR) and UK Biobank participants. While the PES and PGS were not correlated in the NTR sample, they were correlated in the larger UK biobank sample, indicating the potential presence of rGE. We discuss several limitations pertaining to our dataset, such as a potential influence of common method bias, and reflect on how PESs might be used in future research.
MULTIFILE