During the last twenty years, a remarkable new type of service has been developed in the world of sports, which can be described as the indoorisation of outdoor sports. Typical outdoor sports like climbing, skiing, surfing, rowing, and skydiving, which used to be exclusively practiced in a natural environment of mountains, oceans, rivers and the air, are now being offered for consumption in safe, predictable and controlled indoor centers. The present article emphasizes the rise of indoor lifestyle sports, such as rafting, snowboarding, skydiving and surfing. It discusses the conditions under and ways in which commercial entrepreneurs in the Netherlands have created this market, the meanings that they have ascribed to their centers and the dilemmas with which they have been confronted. It is argued that the rise of this economic market cannot be understood if it is solely interpreted as the result of economic, technological or natural developments. These economic activities were also embedded in and influenced by shared understandings and their representations in structured fields of outdoor sports, mainstream sports and leisure experience activities. A better understanding of the indoorisation of outdoor lifestyle sports can be achieved by recognizing how these structures and cultures pervaded the rise of this new market.
The interaction between physical drivers from oceanographic, hydrological, and meteorological processes in coastal areas can result in compound flooding. Compound flood events, like Cyclone Idai and Hurricane Harvey, have revealed the devastating consequences of the co-occurrence of coastal and river floods. A number of studies have recently investigated the likelihood of compound flooding at the continental scale based on simulated variables of flood drivers, such as storm surge, precipitation, and river discharges. At the global scale, this has only been performed based on observations, thereby excluding a large extent of the global coastline. The purpose of this study is to fill this gap and identify regions with a high compound flooding potential from river discharge and storm surge extremes in river mouths globally. To do so, we use daily time series of river discharge and storm surge from state-of-the-art global models driven with consistent meteorological forcing from reanalysis datasets. We measure the compound flood potential by analysing both variables with respect to their timing, joint statistical dependence, and joint return period. Our analysis indicates many regions that deviate from statistical independence and could not be identified in previous global studies based on observations alone, such as Madagascar, northern Morocco, Vietnam, and Taiwan. We report possible causal mechanisms for the observed spatial patterns based on existing literature. Finally, we provide preliminary insights on the implications of the bivariate dependence behaviour on the flood hazard characterisation using Madagascar as a case study. Our global and local analyses show that the dependence structure between flood drivers can be complex and can significantly impact the joint probability of discharge and storm surge extremes. These emphasise the need to refine global flood risk assessments and emergency planning to account for these potential interactions.
MULTIFILE
We investigate hydrology during a past climate slightly warmer than the present: the last interglacial (LIG). With daily output of preindustrial and LIG simulations from eight new climate models we force hydrological model PCR‐GLOBWB and in turn hydrodynamic model CaMa‐Flood. Compared to preindustrial, annual mean LIG runoff, discharge, and 100‐yr flood volume are considerably larger in the Northern Hemisphere, by 14%, 25%, and 82%, respectively. Anomalies are negative in the Southern Hemisphere. In some boreal regions, LIG runoff and discharge are lower despite higher precipitation, due to the higher temperatures and evaporation. LIG discharge is much higher for the Niger, Congo, Nile, Ganges, Irrawaddy, and Pearl and lower for the Mississippi, Saint Lawrence, Amazon, Paraná, Orange, Zambesi, Danube, and Ob. Discharge is seasonally postponed in tropical rivers affected by monsoon changes. Results agree with published proxies on the sign of discharge anomaly in 15 of 23 sites where comparison is possible.
The overall purpose of this consultancy was to support the activities under the Environmental Monitoring and Assessment Programme of the UN Economic Commission for Europe (UNECE) in developing the 7th pan-European environmental assessment, an indicator based and thematic assessment, implemented jointly with the United Nations Environment Programme (UNEP) and in support of the 2030 Agenda for Sustainable Development. The series of environmental assessments of the pan-European region provide up to-date and policy-relevant information on the interactions between the environment and society. This consultancy was to:> Draft the input on drivers and developments to chapter 1.2 of the assessment related to the environmental theme “4.2 Applying principles of circular economy to sustainable tourism”.> Suggest to UNECE and UNEP the most policy relevant indicators from UNECE-environmental, SDG indicators and from other indicator frameworks such as EEA or OECD for the environmental theme for the sub-chapter 4.2.> Assess the current state, trends and recent developments and prepare the substantive part of sub-chapter 4.2 (summary - part I) and an annex (part II) with the detailed analysis and findings.
In the last decade, the automotive industry has seen significant advancements in technology (Advanced Driver Assistance Systems (ADAS) and autonomous vehicles) that presents the opportunity to improve traffic safety, efficiency, and comfort. However, the lack of drivers’ knowledge (such as risks, benefits, capabilities, limitations, and components) and confusion (i.e., multiple systems that have similar but not identical functions with different names) concerning the vehicle technology still prevails and thus, limiting the safety potential. The usual sources (such as the owner’s manual, instructions from a sales representative, online forums, and post-purchase training) do not provide adequate and sustainable knowledge to drivers concerning ADAS. Additionally, existing driving training and examinations focus mainly on unassisted driving and are practically unchanged for 30 years. Therefore, where and how drivers should obtain the necessary skills and knowledge for safely and effectively using ADAS? The proposed KIEM project AMIGO aims to create a training framework for learner drivers by combining classroom, online/virtual, and on-the-road training modules for imparting adequate knowledge and skills (such as risk assessment, handling in safety-critical and take-over transitions, and self-evaluation). AMIGO will also develop an assessment procedure to evaluate the impact of ADAS training on drivers’ skills and knowledge by defining key performance indicators (KPIs) using in-vehicle data, eye-tracking data, and subjective measures. For practical reasons, AMIGO will focus on either lane-keeping assistance (LKA) or adaptive cruise control (ACC) for framework development and testing, depending on the system availability. The insights obtained from this project will serve as a foundation for a subsequent research project, which will expand the AMIGO framework to other ADAS systems (e.g., mandatory ADAS systems in new cars from 2020 onwards) and specific driver target groups, such as the elderly and novice.