Thoroughly examines the measurement, modeling and design approaches of wind turbine and wind farm aerodynamicsIncludes outlooks on the promising topics for future researchContains contributions of internationally renowned experts
LINK
In this report, the details of an investigation into the eect of the low induction wind turbines on the Levelised Cost of Electricity (LCoE) in a 1GW oshore wind farm is outlined. The 10 MW INNWIND.EU conventional wind turbine and its low induction variant, the 10 MW AVATAR wind turbine, are considered in a variety of 10x10 layout configurations. The Annual Energy Production (AEP) and cost of electrical infrastructure were determined using two in-house ECN software tools, namely FarmFlow and EEFarm II. Combining this information with a generalised cost model, the LCoE from these layouts were determined. The optimum LCoE for the AVATAR wind farm was determined to be 92.15 e/MWh while for the INNWIND.EU wind farm it was 93.85 e/MWh. Although the low induction wind farm oered a marginally lower LCoE, it should not be considered as definitive due to simple nature of the cost model used. The results do indicate that the AVATAR wind farms require less space to achieve this similar cost performace, with a higher optimal wind farm power density (WFPD) of 3.7 MW/km2 compared to 3 MW/km2 for the INNWIND.EU based wind farm.
Airborne wind energy (AWE) systems use tethered flying devices to harvest higher-altitude winds to produce electricity. For the success of the technology, it is crucial to understand how people perceive and respond to it. If concerns about the technology are not taken seriously, it could delay or prevent implementation, resulting in increased costs for project developers and a lower contribution to renewable energy targets. This literature review assessed the current state of knowledge on the social acceptance of AWE. A systematic literature search led to the identification of 40 relevant publications that were reviewed. The literature expected that the safety, visibility, acoustic emissions, ecological impacts, and the siting of AWE systems impact to which extent the technology will be accepted. The reviewed literature viewed the social acceptance of AWE optimistically but lacked scientific evidence to back up its claims. It seemed to overlook the fact that the impact of AWE’s characteristics (e.g., visibility) on people’s responses will also depend on a range of situational and psychological factors (e.g., the planning process, the community’s trust in project developers). Therefore, empirical social science research is needed to increase the field’s understanding of the acceptance of AWE and thereby facilitate development and deployment.
Wat is de mogelijke rol van lokale duurzame energiesystemen en –initiatieven in de overgang naar een duurzame samenleving? En hoe kunnen op lokale toepassing gerichte innovaties worden ontwikkeld en toegepast op een zodanige manier dat deze bij lokale systemen en initiatieven aansluiten?Deze vragen staan centraal in dit onderzoeksproject dat zich richt op innovaties die rekening houden met een grotere rol van burgers bij een duurzame energievoorziening. Het project behelst echter meer dan het verrichten van onderzoek. Het beoogt bouwstenen te leveren voor een duurzame samenleving waarin meer ruimte is voor lokale (burger)initiatieven. We stellen drie deelprojecten voor:1. een vergelijkende studie naar energiecoöperaties en vergelijkbare innovatieve initiatieven, binnen en buiten Nederland, in heden en verleden. Daarbij hopen we lering te kunnen trekken uit de succesvolle ervaringen in Denemarken en Oostenrijk en van innovaties door coöperatiesen collectieven in het verleden.2. een analyse van energie-innovaties die beogen aan te sluiten bij lokale energiesystemen. Concreet zal het onderzoek zich richten op speciale batterijen, ontwikkeld dor het bedrijf Dr.Ten, en een soort slimme grote zoneboiler, ontwikkeld door het gelijknamige bedrijf Ecovat.3. De ontwikkeling van drie scenario’s, gebaseerd op inzichten uit studies 1 en 2. De scenario’s zullen bijvoorbeeld inhoudelijk verschillen in de mate waarin deze geïntegreerd zijn in bestaande energiesystemen. Deze zullen worden ontwikkeld en besproken met relevante stakeholders.Het onderzoek moet leiden tot een nauwkeurig overzicht van de mate van interesse en betrokkenheid van stakeholders en van de beperkingen en mogelijkheden van lokale energiesystemen en daarbij betrokken technologie. Ook leidt het tot een routemap voor duurzame energiesystemen op lokaal niveau. Het project heeft een technisch aspect, onderzoek naar verfijning en ontwikkeling van de technologie en een sociaal en normatief aspect, studies naar aansluitingsmogelijkheden bij de wensen en mogelijkheden van burgers, instanties en bedrijven in Noord-Nederland. Bovenal is het integratief en ontwerpend van karakter.This research proposal will explore new socio- technical configurations of local community-based sustainable energy systems. Energy collectives successfully combine technological and societal innovations, developing new business and organization models. A better understanding of their dynamics and needs will contribute to their continued success and thereby contribute to fulfilling the Top Sector’s Agenda. This work will also enhance the knowledge position of the Netherlands on this topic. Currently, over 500 local energy collectives are active in The Netherlands, many of them aim to produce their own sustainable energy, with thousands more in Europe. These collectives search for a new more local-based ways of organizing a sustainable society, including more direct democratic decision-making and influence on local living environment. The development of the collectives is enabled by openings in policy but –evenly important - by innovations in local energy production technologies (solar panels, windmills, biogas installations). Their future role in the sustainable energy transition can be strengthened by careful aligning new organizational and technological innovations in local energy production, storage and smart micro-grids.
Het project "CompEfficient" onderzoekt het verbeteren van energie-efficiëntie in de productie van composietmaterialen, gebruikt in transport en bouw, zoals vliegtuigen, auto’s, treinen, en windturbines. Composieten zijn gunstig door hun lichtgewicht en sterke mechanische eigenschappen die bijdragen aan lagere CO2-emissies. Dit onderzoek focust op zowel biobased als hoogwaardige thermoplastische composieten, waarbij traditionele fabricagemethoden veel energie vereisen, resulterend in relatief hoge CO2-uitstoot. Geleid door Hogeschool Inholland, met industriële partners Eve Reverse en Cato Composites, streeft dit eenjarige project ernaar energie-efficiëntie te verhogen door het persproces - waarbij materialen worden verwarmd en gevormd - te optimaliseren. Dit omvat het verminderen van energieverlies bij het verwarmen en het drukzetten van materialen. Het project zal bestaande pers- en verwarmingsmethoden evalueren en nieuwe technologieën evalueren en testen in een labomgeving, met als doel het energieverbruik te minimaliseren terwijl de productkwaliteit gehandhaafd blijft. De verwachte uitkomsten zullen bredere implicaties hebben voor de industrie door bij te dragen aan duurzamere productieprocessen en het verminderen van de milieu-impact van de composietproductie. Deze innovaties zullen niet alleen van belang zijn voor de betrokken bedrijven maar kunnen ook internationaal worden toegepast, gezien de groeiende vraag naar energie-efficiënte en milieuvriendelijke productiemethoden. Dit project biedt een kans om de voetafdruk van de composietindustrie aanzienlijk te verminderen en ondersteunt de overgang naar meer duurzame industriële processen.
Nederland streeft naar een verduurzaming van het energiesysteem. In 2020 moet 14% van onze energie duurzaam opgewekt zijn, waarbij de zon, naast wind, als belangrijkste duurzame energiebron gezien wordt. Systemen voor geconcentreerde zonne-energie kunnen worden ingezet voor het opwekken van elektrische en/of thermische energie. Grootschalige systemen (multi-MW) met spiegels worden reeds toegepast in zonnevelden. Het HAN Lectoraat Duurzame Energie werkt al enige jaren aan innovatieve systemen met lenzen waarbij naast het concentreren van direct licht het overblijvende diffuse licht beschikbaar is voor verlichting van de onderliggende ruimte. We willen de in eerdere projecten opgedane kennis en ervaring nu inzetten in een nieuw project, waarin we streven van prototype naar toepassing te komen. De bedrijven zijn benaderd over de nog openstaande vragen. Hieruit is een nieuwe onderzoeksvraag gevormd: Hoe kan voor systemen van geconcentreerde zonne-energie voor toepassingen in glastuinbouw en gebouwde omgevingen voor de productie van zowel elektriciteit als warmte, de energie-opbrengst verhoogd worden door een optimaler gebruik van de lichtinval en met een compacter en duurzamer systeem? In dit project, CONSOLE (acroniem voor CONcentrated SOLar Energy), gaan we werken aan het optimaliseren van de bestaande systemen en het ontwerpen van verbeterde (hybride) systemen voor het opwekken van warmte en elektriciteit in kassen en gebouwde omgeving. We gebruiken hiervoor zowel modellering als meten en testen en komen vanuit een inventarisatie tot een pakket van eisen wat uiteindelijk tot verbeterde prototypes leidt die geschikt zijn voor commerciële toepassing. We doen dit vanuit een nauwe samenwerking met 12 MKB’s, een branche-organisatie en een Centre of Expertise. Daarnaast is er een directe koppeling met het onderwijs, door de betrokkenheid van docent-onderzoekers en studenten in semesterprojecten, stages en afstudeerprojecten.