Multi file

Als de machine kiest

Overview

Publication date
Accessibility
Unknown
DOI


Description

In het werving- en selectieproces proberen organisaties in eerste instantie zoveel mogelijk geschikte kandidaten te laten solliciteren (een marketing/ branding probleem) om daaruit dan de meest geschikte kandidaat te kiezen (een selectieprobleem).

Het is wettelijk verboden om bij het selecteren van kandidaten te discrimineren op kenmerken die niet relevant zijn voor de selectie (zoals huidskleur, geloof of leeftijd). Maar een eerlijk en rechtvaardig proces moet verder gaan dan de wet. Een ethische aanpak zorgt ervoor dat gelijk gesitueerde mensen gelijk behandeld worden, dat vooroordelen geen kans hebben, dat kandidaten met menswaardigheid en respect behandeld worden, dat de procedures en uitkomsten voor iedereen helder zijn, dat de kandidaat zinnige feedback krijg na het proces, en dat de voorspellingen over het toekomstige werksucces van een kandidaat daadwerkelijk kloppen.

Voor elk van de fasen van werving- en selectie zijn er kunstmatige intelligentiesystemen op de markt die organisaties kunnen helpen bij het proces. Die technologieën hebben gevolgen voor wie er wel of niet worden geselecteerd en kunnen dus een impact hebben op de diversiteit van een organisatie.

De diversiteit binnen een organisatie kan op drie manieren worden vergroot. Je kunt de bestaande bias uit het proces proberen te halen, je kunt barrières die ervoor zorgen dat alleen specifieke groepen kunnen of willen solliciteren wegnemen, en je kunt actief op zoek gaan naar kandidaten met een divers profiel.

Technologie zou op drie manieren kunnen helpen bij het verminderen van bias binnen het proces. Irrelevante persoonskenmerken kunnen automatisch buiten beschouwing worden gelaten en je kunt een stuk makkelijker dan bij een menselijke recruiter meten op wat voor manier het systeem biased is. Ook zou technologie kunnen helpen bij het vinden
van nieuwe groepen kandidaten die eerder nog niet in beeld waren.

De voordelen van het gebruik van kunstmatige intelligentie hebben daarnaast vooral te maken met efficiëntie. Delen van het proces kunnen worden geautomatiseerd, en de werkwijze kan meer uniform gemaakt. Het zijn daarom vooral organisaties die grote aantal kandidaten werven die op dit moment gebruik maken van kunstmatige intelligentie.

Er kleven ook grote risico’s aan het gebruik van kunstmatige intelligentie binnen werving- en selectieprocessen. Omdat veel van de technologie uitgaat van de huidige (succesvolle) werknemers is er de kans dat je de (weinige diverse) status quo juist handhaaft. Het is nooit uit te sluiten dat er hele specifieke vormen van bias met betrekking tot bepaalde groepen in het systeem blijven zitten, en dit soort systemen kunnen sowieso slecht omgaan met individuen die op een of andere manier afwijken van de norm. Die bias die – ook na een zorgvuldige implementatie – overblijft is dan wel meteen systematisch en schaalt mee met de inzet van de technologie. Verder blijft het moeilijk om te valideren of de kunstmatige intelligentie die je inzet wel goed werkt. Tot slot hebben dit soort systemen veel data nodig. Dit kan op het gebied van privacy en de vereiste dataminimalisatie problemen opleveren.

Je hoort vaak dat we ons geen zorgen hoeven te maken over de inzet van kunstmatige intelligentie binnen werving- en selectie. Het is immers voorlopig nog steeds de mens die de uiteindelijke beslissing neemt. Dit klopt (vooralsnog) misschien nog wel voor het aannemen van de kandidaat, maar is allang niet meer het geval voor de kandidaten die worden afgewezen. Daar is het vaak al de machine die kiest, zonder enige menselijke tussenkomst.

Als je er toch voor kiest om kunstmatige intelligentiesystemen binnen werving- en selectieprocessen te implementeren, dan moet je dat op een heel intentionele manier doen. En met een scherpe blik op de achterliggende waarden. Dit onderzoek heeft gereedschap opgeleverd dat daarbij kan helpen. Met de AI in Recruitment (AIR) Discussietool kun je aan de hand van de volgende vijf vragen (en de bijbehorende deelvragen) komen tot een zo verantwoord mogelijke implementatie:

1. Wat is voor jouw organisatie eerlijke en rechtvaardige werving en selectie?
2. Hoe zit het met de benodigde data?
3. Blijft de mens de baas over het proces?
4. Is jouw organisatie en is de technologie onbevooroordeeld?
5. Weet je zeker dat de technologie werkt en dat het blijft werken?


© 2024 SURF