The EU Climate and Energy Policy Framework targets a 40% reduction in Greenhouse Gases (GHGs) emission by companies (when compared to 1990’s values) in 2030 [1]. Preparing for that future, many companies are working to reach climate neutrality in 2030. For water and wastewater treatment plants aeration processes could represent up to 70% of the whole energy consumption of the plant. Thus, a process which must be carefully evaluated if climate neutrality is a target. VortOx is an alternative to reduce power consumption in aeration processes. It is structured to test the applicability of geometrically constrained vortices in a hyperbolic funnel (aka “Schauberger”- funnel) as an innovative aeration technique for this industry. Recent investigations have shown that such systems allow an average of 12x more oxygen transfer coefficients (KLa) than that of comparable methods like air jets or impellers [10]. However, the system has a relatively small hydraulic retention time (HRT), which compromises its standard oxygen transfer ratio (SOTR). Additionally, so far, the system has only been tested in pilot (lab) scale. Vortox will tackle both challenges. Firstly, it will test geometry and flow adaptations to increase HRT keeping the same KLa levels. And secondly, all will be done using a real scale hyperbolic funnel and real effluent from Leeuwarden’s wastewater treatment plant demo-site. If proven feasible, Vortox can be a large step towards climate neutral water and wastewater treatment systems.