We describe here the design and implementation of the Fashion Tech Farm (FTF), which aims to drive sustainable innovation in garments and fashion. We describe our goals, design principles, and the implementation. The design principles are rooted in an understanding of the fashion system, open networks, and entrepreneurial thinking. After four years of work on the FTF, we review three projects to evaluate how far the work has achieved the main goals and how our design principles are developing.
MULTIFILE
It is expected that future transportation technologies will positively impact how passengers travel to their destinations. Europe aims to integrate air transport into the overall multimodal transport network to provide better service to passengers, while reducing travel time and making the network more resilient to disruptions. This study presents an approach that investigates these aspects by developing a simulation platform consisting of different models, allowing us to simulate the complete door-to-door trajectory of passengers. To address the future potential, we devised scenarios considering three time horizons: 2025, 2035, and 2050. The experimental design allowed us to identify potential obstacles for future travel, the impact on the system’s resilience, and how the integration of novel technology affects proxy indicators of the level of service, such as travel time or speed. In this paper, we present for the first time an innovative methodology that enables the modelling and simulation of door-to-door travel to investigate the future performance of the transport network. We apply this methodology to the case of a travel trajectory from Germany to Amsterdam considering a regional and a hub airport; it was built considering current information and informed assumptions for future horizons. Results indicate that, with the new technology, the system becomes more resilient and generally performs better, as the mean speed and travel time are improved. Furthermore, they also indicate that the performance could be further improved considering other elements such as algorithmic governance.
MULTIFILE
This publication marks the first results of the Tactical Media Room Ukraine project, launched in February 2022 in Amsterdam after the shocking Russian full-scale invasion of Ukraine. Tactical Media Room is a network of activists, journalists, scholars, and artists linked by the exchange of ideas and practices—all aimed at supporting Ukrainian media and confronting Russian state propaganda. Together, the network of experts initiated a screening and a series of meetings that took place mainly in Amsterdam. Based on these meetings, Dispatches from Ukraine: Tactical Media Reflections and Responses showcases initiatives, critique, and essays that provide insights into the ways information circulates in time of war.This edition also aims at overcoming the Eurocentric approach through inviting Ukrainian journalists, artists, and thinkers to share their observations and personal experience of living through war in the digital age. It allows the collected reflections to be grounded and situated within the certain context of Ukrainian, Belarusian and Russian long-lasting conflicts. While on the one hand, perspectives on info-war and the array of urgents matters at a distance are presented, on the other hand, this publication also focuses on what is missing from outside of the war-zones.
The demand for mobile agents in industrial environments to perform various tasks is growing tremendously in recent years. However, changing environments, security considerations and robustness against failure are major persistent challenges autonomous agents have to face when operating alongside other mobile agents. Currently, such problems remain largely unsolved. Collaborative multi-platform Cyber- Physical-Systems (CPSs) in which different agents flexibly contribute with their relative equipment and capabilities forming a symbiotic network solving multiple objectives simultaneously are highly desirable. Our proposed SMART-AGENTS platform will enable flexibility and modularity providing multi-objective solutions, demonstrated in two industrial domains: logistics (cycle-counting in warehouses) and agriculture (pest and disease identification in greenhouses). Aerial vehicles are limited in their computational power due to weight limitations but offer large mobility to provide access to otherwise unreachable places and an “eagle eye” to inform about terrain, obstacles by taking pictures and videos. Specialized autonomous agents carrying optical sensors will enable disease classification and product recognition improving green- and warehouse productivity. Newly developed micro-electromechanical systems (MEMS) sensor arrays will create 3D flow-based images of surroundings even in dark and hazy conditions contributing to the multi-sensor system, including cameras, wireless signatures and magnetic field information shared among the symbiotic fleet. Integration of mobile systems, such as smart phones, which are not explicitly controlled, will provide valuable information about human as well as equipment movement in the environment by generating data from relative positioning sensors, such as wireless and magnetic signatures. Newly developed algorithms will enable robust autonomous navigation and control of the fleet in dynamic environments incorporating the multi-sensor data generated by the variety of mobile actors. The proposed SMART-AGENTS platform will use real-time 5G communication and edge computing providing new organizational structures to cope with scalability and integration of multiple devices/agents. It will enable a symbiosis of the complementary CPSs using a combination of equipment yielding efficiency and versatility of operation.