This study investigated the comparative impact of AR avatars versus 2D video avatars on secondary students' engagement, learning motivation, and subject interest in history education. A quasi-experimental study was conducted with German secondary students aged 11-14 across three conditions: control group (no intervention), 2D avatar learning experience, and AR avatar learning experience.
DOCUMENT
Communication between healthcare professionals and deaf patients has been particularly challenging during the COVID-19 pandemic. We have explored the possibility to automatically translate phrases that are frequently used in the diagnosis and treatment of hospital patients, in particular phrases related to COVID-19, from Dutch or English to Dutch Sign Language (NGT). The prototype system we developed displays translations either by means of pre-recorded videos featuring a deaf human signer (for a limited number of sentences) or by means of animations featuring a computer-generated signing avatar (for a larger, though still restricted number of sentences). We evaluated the comprehensibility of the signing avatar, as compared to the human signer. We found that, while individual signs are recognized correctly when signed by the avatar almost as frequently as when signed by a human, sentence comprehension rates and clarity scores for the avatar are substantially lower than for the human signer. We identify a number of concrete limitations of the JASigning avatar engine that underlies our system. Namely, the engine currently does not offer sufficient control over mouth shapes, the relative speed and intensity of signs in a sentence (prosody), and transitions between signs. These limitations need to be overcome in future work for the engine to become usable in practice.
DOCUMENT
In de afgelopen jaren hebben technologische ontwikkelingen de aard van dienstverlening ingrijpend veranderd (Huang & Rust, 2018). Technologie wordt steeds vaker ingezet om menselijke servicemedewerkers te vervangen of te ondersteunen (Larivière et al., 2017; Wirtz et al., 2018). Dit stelt dienstverleners in staat om meer klanten te bedienen met minder werknemers, waardoor de operationele efficiëntie toeneemt (Beatson et al., 2007). Deze operationele efficiëntie leidt weer tot lagere kosten en een groter concurrentievermogen. Ook voor klanten kan de inzet van technologie voordelen hebben, zoals betere toegankelijkheid en consistentie, tijd- en kostenbesparing en (de perceptie van) meer controle over het serviceproces (Curran & Meuter, 2005). Mede vanwege deze beoogde voordelen is de inzet van technologie in service-interacties de afgelopen twee decennia exponentieel gegroeid. De inzet van zogenaamde conversational agents is een van de belangrijkste manieren waarop dienstverleners technologie kunnen inzetten om menselijke servicemedewerkers te ondersteunen of vervangen (Gartner, 2021). Conversational agents zijn geautomatiseerde gesprekspartners die menselijk communicatief gedrag nabootsen (Laranjo et al., 2018; Schuetzler et al., 2018). Er bestaan grofweg drie soorten conversational agents: chatbots, avatars, en robots. Chatbots zijn applicaties die geen virtuele of fysieke belichaming hebben en voornamelijk communiceren via gesproken of geschreven verbale communicatie (Araujo, 2018;Dale, 2016). Avatars hebben een virtuele belichaming, waardoor ze ook non-verbale signalen kunnen gebruiken om te communiceren, zoals glimlachen en knikken (Cassell, 2000). Robots, ten slotte, hebben een fysieke belichaming, waardoor ze ook fysiek contact kunnen hebben met gebruikers (Fink, 2012). Conversational agents onderscheiden zich door hun vermogen om menselijk gedrag te vertonen in service-interacties, maar op de vraag ‘hoe menselijk is wenselijk?’ bestaat nog geen eenduidig antwoord. Conversational agents als sociale actoren Om succesvol te zijn als dienstverlener, is kwalitatief hoogwaardige interactie tussen servicemedewerkers en klanten van cruciaal belang (Palmatier et al., 2006). Dit komt omdat klanten hun percepties van een servicemedewerker (bijv. vriendelijkheid, bekwaamheid) ontlenen aan diens uiterlijk en verbale en non verbale gedrag (Nickson et al., 2005; Specht et al., 2007; Sundaram & Webster, 2000). Deze klantpercepties beïnvloeden belangrijke aspecten van de relatie tussen klanten en dienstverleners, zoals vertrouwen en betrokkenheid, die op hun beurt intentie tot gebruik, mond-tot-mondreclame, loyaliteit en samenwerking beïnvloeden (Hennig-Thurau, 2004; Palmatier et al., 2006).Er is groeiend bewijs dat de uiterlijke kenmerken en communicatieve gedragingen (hierna: menselijke communicatieve gedragingen) die percepties van klanten positief beïnvloeden, ook effectief zijn wanneer ze worden toegepast door conversational agents (B.R. Duffy, 2003; Holtgraves et al., 2007). Het zogenaamde ‘Computers Als Sociale Actoren’ (CASA paradigma vertrekt vanuit de aanname dat mensen de neiging hebben om onbewust sociale regels en gedragingen toe te passen in interacties met computers, ondanks het feit dat ze weten dat deze computers levenloos zijn (Nass et al., 1994). Dit kan verder worden verklaard door het fenomeen antropomorfisme (Epley et al., 2007; Novak & Hoffman, 2019). Antropomorfisme houdt in dat de aanwezigheid van mensachtige kenmerken of gedragingen in niet-menselijke agenten, onbewust cognitieve schema's voor menselijke interactie activeert (Aggarwal & McGill, 2007; M.K. Lee et al., 2010). Door computers te antropomorfiseren komen mensen tegemoet aan hun eigen behoefte aan sociale verbinding en begrip van de sociale omgeving (Epley et al., 2007; Waytz et al., 2010). Dit heeft echter ook tot gevolg dat mensen cognitieve schema’s voor sociale perceptie toepassen op conversational agents.
DOCUMENT
Stel: je bent op vakantie in Frankrijk. Je staat bij een bakkerij met 15 mensen achter je in de rij. Je voelt de tijdsdruk en daardoor schieten de woorden tekort: je kunt de boodschap niet goed overbrengen. Voor mensen met afasie is dit de dagelijkse realiteit.
In this project, the AGM R&D team developed and refined the use of a facial scanning rig. The rig is a physical device comprising multiple cameras and lighting that are mounted on scaffolding around a 'scanning volume'. This is an area at which objects are placed before being photographed from multiple angles. The object is typically a person's head, but it can be anything of this approximate size. Software compares the photographs to create a digital 3D recreation - this process is called photogrammetry. The 3D model is then processed by further pieces of software and eventually becomes a face that can be animated inside in Unreal Engine, which is a popular piece of game development software made by the company Epic. This project was funded by Epic's 'Megagrant' system, and the focus of the work is on streamlining and automating the processing pipeline, and on improving the quality of the resulting output. Additional work has been done on skin shaders (simulating the quality of real skin in a digital form) and the use of AI to re/create lifelike hair styles. The R&D work has produced significant savings in regards to the processing time and the quality of facial scans, has produced a system that has benefitted the educational offering of BUas, and has attracted collaborators from the commercial entertainment/simulation industries. This work complements and extends previous work done on the VIBE project, where the focus was on creating lifelike human avatars for the medical industry.