Although urban agriculture as a way to come to sustainable urban food systems can be questioned and we have to be aware not falling into a ‘local trap’ regarding its benefits (Born & Purcell, 2006), initiatives for urban agriculture emerge all over the world. Some of these primarily focus on achieving social and educational goals while others try to become an (high tech) alternative to existing food supply chains. Whichever the goals of urban agriculture, in practice many of these initiatives have difficulties in their (logistics) operations. Research on urban agriculture and local‐for‐local food supply chains mainly focuses on environmental and economic benefits, alternative production techniques, short food supply chains (logistics infrastructure) or socio‐economic benefits of urban agriculture. So far, the alignment of urban agriculture goals with the chosen logistics concept – which includes more aspects than only infrastructure – has not gained much attention. This paper tries to fill this gap through an exploration of urban agriculture projects – both low and high tech – from around the world by using the integrated logistics concept (Van Goor et al., 2003). The main question to be answered in this paper is: to what extend can the integrated logistics concept contribute to understanding logistics drivers and barriers of urban agriculture projects? To answer this question, different urban agriculture projects were studied through information on their websites and an internet based questionnaire with key players in these projects. Our exploration shows that the ILC is a useful tool for determining logistics drivers and barriers and that there is much potential in using this concept when planning for successful urban agriculture projects.
MULTIFILE
Purpose: This study analyses how weather shocks influence agricultural entrepreneurs’ risk perception and how they manage these risks. It explores what risks agricultural entrepreneurs perceive as important, and how they face climate change and related weather shock risks compared to the multiple risks of the enterprise. Design/methodology: This paper uses qualitative data from several sources: eight semi-structured interviews with experts in agriculture, three focus groups with experts and entrepreneurs, and 32 semi-structured interviews with agricultural entrepreneurs. Findings: not published yet Originality and value: This study contributes to the literature about risk management by small- and medium-sized agricultural enterprises: it studies factors that shape perceptions about weather shocks and about climate change and how these perceptions affect actions to manage related risks, and it identifies factors that motivate agricultural entrepreneurs to adapt to climate change and changing weather shock risks. Practical implications can lay the foundation for concrete actions and policies to improve the resilience and sustainability of the sector, by adjusting risk management strategies, collaboration, knowledge sharing, and climate adaptation policy support.
DOCUMENT
Societal actors across scales and geographies increasingly demand visual applications of systems thinking – the process of understanding and changing the reality of a system by considering its whole set of interdependencies – to address complex problems affecting food and agriculture. Yet, despite the wide offer of systems mapping tools, there is still little guidance for managers, policy-makers, civil society and changemakers in food and agriculture on how to choose, combine and use these tools on the basis of a sufficiently deep understanding of socio-ecological systems. Unfortunately, actors seeking to address complex problems with inadequate understandings of systems often have limited influence on the socio-ecological systems they inhabit, and sometimes even generate unintended negative consequences. Hence, we first review, discuss and exemplify seven key features of systems that should be – but rarely have been – incorporated in strategic decisions in the agri-food sector: interdependency, level-multiplicity, dynamism, path dependency, self-organization, non-linearity and complex causality. Second, on the basis of these features, we propose a collective process to systems mapping that grounds on the notion that the configuration of problems (i.e., how multiple issues entangle with each other) and the configuration of actors (i.e., how multiple actors relate to each other and share resources) represent two sides of the same coin. Third, we provide implications for societal actors - including decision-makers, trainers and facilitators - using systems mapping to trigger or accelerate systems change in five purposive ways: targeting multiple goals; generating ripple effects; mitigating unintended consequences; tackling systemic constraints, and collaborating with unconventional partners.
MULTIFILE
Aeres University of Applied Sciences has placed internationalisation as a key driver in its overall strategy. By prioritising the internationalisation of education and educational consultancy the university has created solid opportunities for students, lecturers, and partners at regional, national, and international levels. Currently, more strategic development on internationalisation in applied research at Aeres is needed. There is an opportunity to utilise highly proficient researchers, state-of-the-art facilities, and an impressive national research portfolio, and for this, there is a need to develop international research agenda, a key priority for AeresResearch4EU. To address this need, Aeres University of Applied Sciences aims to strengthen its internationalisation efforts with its research activities, opening the door to many opportunities, and most importantly, creating an international research agenda spanning the university's three locations. The main objectives of AeresResearch4EU are to analyse the existing research strategy and professorships and develop them towards a global research agenda for the European Union. By focusing on international research projects, Aeres can further enhance its reputation as a leading institution for applied research in agriculture, food, environment, and green technologies. AeresResearch4EU aims to create new partnerships and collaborations with researchers and institutions across Europe, allowing Aeres to contribute to developing innovative and sustainable solutions to global challenges. With its strong commitment to internationalisation and its focus on applied research, Aeres University of Applied Sciences is poised to become an essential player in the European research landscape.
Drones have been verified as the camera of 2024 due to the enormous exponential growth in terms of the relevant technologies and applications such as smart agriculture, transportation, inspection, logistics, surveillance and interaction. Therefore, the commercial solutions to deploy drones in different working places have become a crucial demand for companies. Warehouses are one of the most promising industrial domains to utilize drones to automate different operations such as inventory scanning, goods transportation to the delivery lines, area monitoring on demand and so on. On the other hands, deploying drones (or even mobile robots) in such challenging environment needs to enable accurate state estimation in terms of position and orientation to allow autonomous navigation. This is because GPS signals are not available in warehouses due to the obstruction by the closed-sky areas and the signal deflection by structures. Vision-based positioning systems are the most promising techniques to achieve reliable position estimation in indoor environments. This is because of using low-cost sensors (cameras), the utilization of dense environmental features and the possibilities to operate in indoor/outdoor areas. Therefore, this proposal aims to address a crucial question for industrial applications with our industrial partners to explore limitations and develop solutions towards robust state estimation of drones in challenging environments such as warehouses and greenhouses. The results of this project will be used as the baseline to develop other navigation technologies towards full autonomous deployment of drones such as mapping, localization, docking and maneuvering to safely deploy drones in GPS-denied areas.
Agriculture; Macro-Micro-Macro perspective; Public goods and Public bads; Collective action; Commons; Opposite concerns; Farmers and Peasants; Anthropology