Air transportation has grown in an unexpected way during last decades and is expected to increase even more in the next years. Traffic growth tendencies forecast an expansion in the demand and greater aviation connectivity, but also higher workload to the different airspace users, especially for airport and services. Therefore, it is essential to employ strategies designed to use efficiently valuable corporate resource. Airport authorities around the world are investing in large capital projects, including new or improved runways, terminal expansions, and entirely new airports. However, this effort is sometimes limited due to their geographic location. In this work, two main objectives are pursued: first, to highlight the importance of the industry by exposing the current situation and future trends all over the world focusing in the Mexican industry; and second, to introduce a simulation model which can be used as a decision making tool for the upcoming demand. The analysis of the scenarios illustrates how to develop strategies to cope with the different airspace user's needs.
MULTIFILE
Airports and surrounding airspaces are limited in terms of capacity and represent the major bottleneck in the air traffic management system. This paper proposes a two level model to tackle the integrated optimization problem of arrival, departure, and surface operations. The macroscopic level considers the terminal airspace management for arrivals and departures and airport capacity management, while the microscopic level optimizes surface operations and departure runway scheduling. An adapted simulated annealing heuristic combined with a time decomposition approach is proposed to solve the corresponding problem. Computational experiments performed on real-world case studies of Paris Charles De-Gaulle airport, show the benefits of this integrated approach.
In this paper, a general approach for modeling airport operations is presented. Airport operations have been extensively studied in the last decades ranging from airspace, airside and landside operations. Due to the nature of the system, simulation techniques have emerged as a powerful approach for dealing with the variability of these operations. However, in most of the studies, the different elements are studied in an individual fashion. The aim of this paper, is to overcome this limitation by presenting a methodological approach where airport operations are modeled together, such as airspace and airside. The contribution of this approach is that the resolution level for the different elements is similar therefore the interface issues between them is minimized. The framework can be used by practitioners for simulating complex systems like airspace-airside operations or multi-airport systems. The framework is illustrated by presenting a case study analyzed by the authors.