Aim of this presentation was to stress the utmost importance of gaining insight in the physical-spatial quality and context of the urban fabric as a whole before venturing out into the realm of transformation design proposals. Large-scale areas or confined objects alike, the quality of the urban frame is precondition to the socioeconomic efficacy of the programme in question and the role and position of public spaces such as squares, parks, (main) streets and urban axes.
The Technical Manual for the digital evaluation tool QualiTePE supports users of the QualiTePE tool in creating, conducting and analysing evaluations to record the quality of teaching in physical education. The information on the General Data Protection Regulation (GDPR) instructs users on how to anonymise the data collection of evaluations and which legal bases apply with regard to the collection of personal data. The technical manual for the digital evaluation tool QualiTePE and the information on the General Data Protection Regulation (GDPR) are available in English, German, French, Italian, Spanish, Dutch, Swedish, Slovenian, Czech and Greek.
This paper seeks to make a contribution to business model experimentation for sustainability by putting forward a relatively simple tool. This tool calculates the financial and sustainability impact based on the SDG’s of a newly proposed business model (BM). BM experimentation is described by Bocken et al. (2019) as an iterative-multi-actor experimentation process. At the final experimentation phases some form of sustainability measurement will be necessary in order to validate if the new proposed business model will be achieving the aims set in the project. Despite the plethora of tools, research indicates that tools that fit needs and expectations are scarce, lack the specific focus on sustainable BM innovation, or may be too complex and demanding in terms of time commitment (Bocken, Strupeit, Whalen, & Nußholz, 2019a). In this abstract we address this gap, or current inability of calculating the financial and sustainability effect of a proposed sustainable BM in an integrated, time effective manner. By offering a practical tool that allows for this calculation, we aim to answer the research question; “How can the expected financial and sustainability impact of BMs be forecasted within the framework of BM experimentation?
Developing a framework that integrates Advanced Language Models into the qualitative research process.Qualitative research, vital for understanding complex phenomena, is often limited by labour-intensive data collection, transcription, and analysis processes. This hinders scalability, accessibility, and efficiency in both academic and industry contexts. As a result, insights are often delayed or incomplete, impacting decision-making, policy development, and innovation. The lack of tools to enhance accuracy and reduce human error exacerbates these challenges, particularly for projects requiring large datasets or quick iterations. Addressing these inefficiencies through AI-driven solutions like AIDA can empower researchers, enhance outcomes, and make qualitative research more inclusive, impactful, and efficient.The AIDA project enhances qualitative research by integrating AI technologies to streamline transcription, coding, and analysis processes. This innovation enables researchers to analyse larger datasets with greater efficiency and accuracy, providing faster and more comprehensive insights. By reducing manual effort and human error, AIDA empowers organisations to make informed decisions and implement evidence-based policies more effectively. Its scalability supports diverse societal and industry applications, from healthcare to market research, fostering innovation and addressing complex challenges. Ultimately, AIDA contributes to improving research quality, accessibility, and societal relevance, driving advancements across multiple sectors.
The focus of the research is 'Automated Analysis of Human Performance Data'. The three interconnected main components are (i)Human Performance (ii) Monitoring Human Performance and (iii) Automated Data Analysis . Human Performance is both the process and result of the person interacting with context to engage in tasks, whereas the performance range is determined by the interaction between the person and the context. Cheap and reliable wearable sensors allow for gathering large amounts of data, which is very useful for understanding, and possibly predicting, the performance of the user. Given the amount of data generated by such sensors, manual analysis becomes infeasible; tools should be devised for performing automated analysis looking for patterns, features, and anomalies. Such tools can help transform wearable sensors into reliable high resolution devices and help experts analyse wearable sensor data in the context of human performance, and use it for diagnosis and intervention purposes. Shyr and Spisic describe Automated Data Analysis as follows: Automated data analysis provides a systematic process of inspecting, cleaning, transforming, and modelling data with the goal of discovering useful information, suggesting conclusions and supporting decision making for further analysis. Their philosophy is to do the tedious part of the work automatically, and allow experts to focus on performing their research and applying their domain knowledge. However, automated data analysis means that the system has to teach itself to interpret interim results and do iterations. Knuth stated: Science is knowledge which we understand so well that we can teach it to a computer; and if we don't fully understand something, it is an art to deal with it.[Knuth, 1974]. The knowledge on Human Performance and its Monitoring is to be 'taught' to the system. To be able to construct automated analysis systems, an overview of the essential processes and components of these systems is needed.Knuth Since the notion of an algorithm or a computer program provides us with an extremely useful test for the depth of our knowledge about any given subject, the process of going from an art to a science means that we learn how to automate something.
Hoe kun je een koper stimuleren om niet perse de -op het eerste gezicht- goedkoopste machine of equipment aan te schaffen, maar ook te kijken naar lange termijn waardebehoud en duurzaamheid? Of andersom, hoe vergelijk je aanbod van leveranciers op een mix van criteria waaronder emissies, maar ook het lange-termijn kostenplaatje? Dit project richt zich op mkb-bedrijven in de metaal- en maakindustrie, waar veel ‘kritieke grondstoffen’ bespaard kunnen worden als er ook naar refurbish, remanufacturing en product-as-a-service gekeken wordt op het moment dat een machine vervangen moet worden. Er zal onderzocht worden in hoeverre goed gepresenteerde en samenhangende informatie over ecologische en economische duurzaamheid kan helpen bij het maken van zulke keuzes. Deze informatie wordt gepresenteerd in een beslissingsondersteunende tool. De tool moet inzicht geven over zg. Total Cost of Ownership (TCO), in plaats van enkel de aanschafprijs, en in de eco-impact van verschillende alternatieven. Eco-impact wordt vaak bepaald d.m.v. een zg. Life Cycle Analysis (LCA), waarin de levenscyclus van een product of dienst bekeken wordt van ‘wieg tot graf’. De TCO brengt juist de financiële aspecten (investering, beheer, onderhoud, ‘end-of-life’) over de levensduur in kaart. Maar het komen tot vergelijkbare LCA/TCO berekeningen vraagt afspraken over uitgangspunten en presentatiemethoden in een keten. In het project worden bestaande (reken)methoden op een vernieuwende wijze gecombineerd worden en in co-creatie geschikt gemaakt worden voor sales engineers en inkopers uit het werkveld. Het ontwerpgerichte onderzoek naar bruikbare presentatiemethoden en het mogelijke effect op aankoopgedrag zal vooral plaatsvinden met behulp van zg. ‘mockups’ waarmee de functionaliteit en interface van de tool iteratief getest wordt. Het eindresultaat is een advies over hoe te komen tot implementatie van de methode door de betrokken partijen. Het project kan zo bijdragen aan het introduceren van nieuwe circulaire business modellen in deze sector.