Augmented Play Spaces (APS) are (semi-) public environments where playful interaction isfacilitated by enriching the existing environment with interactive technology. APS canpotentially facilitate social interaction and physical activity in (semi-)public environments. Incontrolled settings APS show promising effects. However, people’s willingness to engagewith APSin situ, depends on many factors that do not occur in aforementioned controlledsettings (where participation is obvious). To be able to achieve and demonstrate thepositive effects of APS when implemented in (semi-)public environments, it is important togain more insight in how to motivate people to engage with them and better understandwhen and how those decisions can be influenced by certain (design) factors. TheParticipant Journey Map (PJM) was developed following multiple iterations. First,based on related work, and insights gained from previously developed andimplemented APS, a concept of the PJM was developed. Next, to validate and refinethe PJM, interviews with 6 experts with extensive experience with developing andimplementing APS were conducted. Thefirst part of these interviews focused oninfluential (design) factors for engaging people into APS. In the second part, expertswere asked to provide feedback on thefirst concept of the PJM. Based on the insightsfrom the expert interviews, the PJM was adjusted and refined. The Participant JourneyMap consists of four layers: Phases, States, Transitions and Influential Factors. There aretwo overarchingphases:‘Onboarding’and‘Participation’and 6statesa (potential)participant goes through when engaging with an APS:‘Transit,’‘Awareness,’‘Interest,’‘Intention,’‘Participation,’‘Finishing.’Transitionsindicate movements between states.Influential factorsare the factors that influence these transitions. The PJM supportsdirections for further research and the design and implementation of APS. Itcontributes to previous work by providing a detailed overview of a participant journeyand the factors that influence motivation to engage with APS. Notable additions are thedetailed overview of influential factors, the introduction of the states‘Awareness,’‘Intention’and‘Finishing’and the non-linear approach. This will support taking intoaccount these often overlooked, key moments in future APS research and designprojects. Additionally, suggestions for future research into the design of APS are given.
DOCUMENT
In their attempts to offer visitors meaningful experiences in historical churches, museums are increasingly experimenting with augmented reality. Arguing that an augmented reality experience should be counted as a material event in its own right, I focus on the aesthetic strategies employed in two augmented reality experiences. The first is an augmented virtuality installation that was presented in the Old Church in Amsterdam (Netherlands). The second concerns a HoloLens experience hosted by St. Peter’s Church in Leuven (Belgium). Drawing on the work of Gernot Böhme (2017) and undertaking a sensory auto-ethnography, I demonstrate how bodily sensations in these augmented reality experiences altered my affective involvement with the church spaces. I found that strategies of defamiliarisation and fragmentation affected my disposition, effectively personalising the perceptional relationship between the church as an authoritative institution and myself in the role as the visitor. Building on recent discussions on museums’ function in society, I also discuss the potential of augmented reality experiences to play on a multitude of meanings, and particularly, in staging dispositions that move away from universal truths.
DOCUMENT
The use of Augmented Reality (AR) in industry is growing rapidly, driven by benefits such as efficiency gains and ability to overcome physical boundaries. Existing studies stress the need to take stakeholder values into account in the design process. In this study the impact of AR on stakeholders' values is investigated by conducting focus groups and interviews, using value sensitive design as a framework. Significant impacts were found on the values of safety, accuracy, privacy, helpfulness and autonomy. Twenty practical design choices to mitigate potential negative impact emerged from the study.
MULTIFILE
Introduction: Visuospatial neglect (VSN) is common after stroke and can seriously hamper everyday life. One of the most commonly used and highly recommended rehabilitation methods is Visual Scanning Training (VST) which requires a lot of repetition which makes the treatment intensive and less appealing for the patient. The use of eHealth in healthcare can increase options regarding improved treatment in the areas of patient satisfaction, treatment efficacy and effectiveness. One solution to motivational issues might be Augmented Reality (AR), which offers new opportunities for increasing natural interactions with the environment during treatment of VSN. Aim: The development of an AR-based scanning training program that will improve visuospatial search strategies in individuals affected by VSN. Method: We used a Design Research approach, which is characterized by the iterative and incremental use of prototypes as research instruments together with a strong human-centered focus. Several design thinking methods were used to explore which design elements the AR game should comply with. Seven patients with visuospatial neglect, eight occupational therapists, a game design professional and seven other healthcare professionals participated in this research by means of co-creation based on their own perspectives. Results: Fundamental design choices for an AR game for VSN patients included the factors extrinsic motivation, nostalgia, metaphors, direct feedback, independent movement, object contrast, search elements and competition. Designing for extrinsic motivation was considered the most important design choice, because due to less self-awareness the target group often does not fully understand and accept the consequences of VSN. Conclusion: This study produced a prototype AR game for people with VSN after stroke. The AR game and method used illustrate the promising role of AR tools in geriatric rehabilitation, specifically those aimed at increasing the independence of patients with VSN after stroke. 2020 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
DOCUMENT
Recent developments in digital technology and consumer culture have created new opportunities for retail and brand event concepts which create value by offering more than solely marketing or transactions, but rather a place where passion is shared. This chapter will define the concept of ‘fashion space’ and consumer experience, and delves into strategies for creating experiences that both align with a brand’s ethos and identity and build brand communities. It will provide insight on creating strong shared brand experiences that integrate physical and digital spaces, AR and VR. These insights can be used for consumer spaces but also for media and buyer events, runway shows, test labs and showrooms. Since its launch in 2007, international fashion brand COS has focused on creating fashion spaces that build and reinforce a COS fashion community. COS retail stores with their extraordinary architecture, both traditional and contemporary, contribute stories and facilitate intense brand experiences. Moreover, COS’ dedication to share the artistic inspirations of its people led to collaborating on interactive and multi-sensory installations which allow consumers to affectively connect to the brand’s personality and values. Thus, the brand was able to establish itself firmly in the lifestyle of its customers, facilitating and developing their aesthetics and values. This is an Accepted Manuscript of a book chapter published by Routledge/CRC Press in "Communicating Fashion Brands. Theoretical and Practical Perspectives" on 03-03-2020, available online: https://www.routledge.com/Communicating-Fashion-Brands-Theoretical-and-Practical-Perspectives/Huggard-Cope/p/book/9781138613560. LinkedIn: https://nl.linkedin.com/in/overdiek12345
MULTIFILE
This paper describes explorations into related technology and research regarding the application of interactive video projection within physical education and the gym of the future. We discuss the application of exergaming in physical education, spatial augmented reality as a technology and participatory design with teachers and children as a design method to develop new concepts. Based on our initial findings we propose directions for further research. Further work includes developing new applications based on the wishes, needs and ideas of physical education teachers and children, incorporating opportunities provided by recent technological developments.
DOCUMENT
Abstract Background Visuospatial neglect (VSN) is a cognitive disorder after stroke in which patients fail to consciously process and interact with contralesional stimuli. Visual Scanning Training (VST) is the recommended treatment in clinical guidelines. At the moment, several mixed reality versions of Visual Scanning Training (VST) are being developed. The aim of this study was to explore the opinions of end-users (i.e., therapists) on the use of Virtual Reality (VR) and Augmented Reality (AR) in VSN treatment. Methods Therapists played one VR and two AR Serious Games, and subsequently flled out a questionnaire on User Experience, Usability, and Implementation. Results Sixteen therapists (psychologists, occupational, speech, and physiotherapists) played the games, thirteen of them evaluated the games. Therapists saw great potential in all three games, yet there was room for improvement on the level of usability, especially for tailoring the games to the patient’s needs. Therapists’ opinions were comparable between VR and AR Serious Games. For implementation, therapists stressed the urgency of clear guidelines and instructions. Discussion Even though VR/AR technology is promising for VSN treatment, there is no one-size-fts-all applicability. It may thus be crucial to move towards a plethora of training environments rather than a single standardized mixed reality neglect treatment. Conclusion As therapists see the potential value of mixed reality, it remains important to investigate the efcacy of AR and VR training tools.
DOCUMENT
The concept of immersion has been widely used for the design and evaluation of user experiences. Augmented, virtual and mixed-reality environments have further sparked the discussion of immersive user experiences and underlying requirements. However, a clear definition and agreement on design criteria of immersive experiences remains debated, creating challenges to advancing our understanding of immersive experiences and how these can be designed. Based on a multidisciplinary Delphi approach, this study provides a uniform definition of immersive experiences and identifies key criteria for the design and staging thereof. Thematic analysis revealed five key themes – transition into/out of the environment, in-experience user control, environment design, user context relatedness, and user openness and motivation, that emphasise the coherency in the user-environment interaction in the immersive experience. The study proposes an immersive experience framework as a guideline for industry practitioners, outlining key design criteria for four distinct facilitators of immersive experiences–systems, spatial, empathic/social, and narrative/sequential immersion. Further research is proposed using the immersive experience framework to investigate the hierarchy of user senses to optimise experiences that blend physical and digital environments and to study triggered, desired and undesired effects on user attitude and behaviour.
MULTIFILE
Virtual, Augmented and Mixed Reality technologies are embraced by designers, scholars and charities alike, some primarily for their entertaining properties, others also for the opportunities in education, motivation or persuasion. Applications with the latter objective, that of persuasion, are designed not only to be entertaining, but are also designed (or framed) to shape how players think and feel about issues in reality. However, despite the growing interest in the persuasive opportunities of these immersive technologies, we still lack the design strategies and best-practices that could support in the design of these ‘immersive persuasive games’. To address this still-unexplored and fragmented design space, we organize a design-oriented workshop that brings together academia and industry. The workshop is informed by a Research through Design approach in which the primary focus is to generate knowledge through designing. Participants design and evaluate ideas on-the-spot in an iterative manner using low-fidelity, life-size, prototyping and role-playing techniques, thereby mimicking an embodied interactive immersive environment. By reflecting on design practices and player experiences, we construct a body of knowledge, built exemplar work and distil best-practices to formulate design strategies for the design of immersive persuasive games.
DOCUMENT
Dealing with and maintaining high-quality standards in the design and construction phases is challenging, especially for on-site construction. Issues like improper implementation of building components and poor communication can widen the gap between design specifications and actual conditions. To prevent this, particularly for energy-efficient buildings, it is vital to develop resilient, sustainable strategies. These should optimize resource use, minimize environmental impact, and enhance livability, contributing to carbon neutrality by 2050 and climate change mitigation. Traditional post-occupancy evaluations, which identify defects after construction, are impractical for addressing energy performance gaps. A new, real-time inspection approach is necessary throughout the construction process. This paper suggests an innovative guideline for prefabricated buildings, emphasizing digital ‘self-instruction’ and ‘self-inspection’. These procedures ensure activities impacting quality adhere to specific instructions, drawings, and 3D models, incorporating the relevant acceptance criteria to verify completion. This methodology, promoting alignment with planned energy-efficient features, is supported by BIM-based software and Augmented Reality (AR) tools, embodying Industry 4.0 principles. BIM (Building Information Modeling) and AR bridge the gap between virtual design and actual construction, improving stakeholder communication and enabling real-time monitoring and adjustments. This integration fosters accuracy and efficiency, which are key for energy-efficient and nearly zero-energy buildings, marking a shift towards a more precise, collaborative, and environmentally sensible construction industry.
DOCUMENT