Twirre is a new architecture for mini-UAV platforms designed for autonomous flight in both GPS-enabled and GPS-deprived applications. The architecture consists of low-cost hardware and software components. High-level control software enables autonomous operation. Exchanging or upgrading hardware components is straightforward and the architecture is an excellent starting point for building low-cost autonomous mini-UAVs for a variety of applications. Experiments with an implementation of the architecture are in development, and preliminary results demonstrate accurate indoor navigation
MULTIFILE
This paper describes the concept of a new algorithm to control an Unmanned Aerial System (UAS) for accurate autonomous indoor flight. Inside a greenhouse, Global Positioning System (GPS) signals are not reliable and not accurate enough. As an alternative, Ultra Wide Band (UWB) is used for localization. The noise is compensated by combining the UWB with the delta position signal from a novel optical flow algorithm through a Kalman Filter (KF). The end result is an accurate and stable position signal with low noise and low drift.
DOCUMENT
Friday 23rd March 2018 the first HiPerGreen semi-annual symposium took place at the newly opened World Horti Center in Naaldwijk. Participants in the form of students, professors and company representatives came together to share progress and ideas. Cock Heemskerk, lector Robotica, opened the event with a welcoming speech. Lucien Fesselet, assistant project manager, followed with general updates on the project. Then the floor was given to the students to present their results and progress. Pieter van der Hoeven, associate lector, presented on behalf of four graduating students from the Business, Finance and Law department the assignment on market research. The findings show great potential in business opportunity with the Orchid market. Amora Amir, a potential PhD researcher on big data, gave a speech on the usefulness and the need to understand big amounts of data. Lucien Fesselet performed a live flight demonstration to give an idea of the capabilities and the behaviour of the drone. After the risk analasys the sympoium was concluded with a drink.
DOCUMENT
To better control the growing process of horticulture plants greenhouse growers need an automated way to efficiently and effectively find where diseases are spreading.The HiPerGreen project has done research in using an autonomous quadcopter for this scouting. In order for the quadcopter to be able to scout autonomously accurate location data is needed. Several different methods of obtaining location data have been investigated in prior research. In this research a relative sensor based on optical flow is looked into as a method of stabilizing an absolute measurement based on trilateration. For the optical flow sensor a novel block matching algorithm was developed. Simulated testing showed that Kalman Filter based sensor fusion of both measurements worked to reduce the standard deviation of the absolute measurement from 30 cm to less than 1 cm, while drift due to dead-reckoning was reduced to a maximum of 11 cm from over 36 cm.
DOCUMENT
In November 2019, the High Performance Greenhouse project (HiPerGreen) was nominated for the RAAK Award 2019, as one of the best applied research projects in the Netherlands. This paper discusses the challenges faced, lessons learned and critical factors in making the project into a success.
DOCUMENT
This paper introduces a novel distributed algorithm designed to optimize the deployment of access points within Mobile Ad Hoc Networks (MANETs) for better service quality in infrastructure less environments. The algorithm operates based on local, independent execution by each network node, thus ensuring a high degree of scalability and adaptability to changing network conditions. The primary focus is to match the spatial distribution of access points with the distribution of client devices while maintaining strong connectivity to the network root. Using autonomous decision-making and choreographed path-planning, this algorithm bridges the gap between demand-responsive network service provision and the maintenance of crucial network connectivity links. The assessment of the performance of this approach is motivated by using numerical results generated by simulations.
DOCUMENT
Over the past few years a growing number of artists have critiqued the ubiquity of identity recognition technologies. Specifically, the use of these technologies by state security programs, tech-giants and multinational corporations has met with opposition and controversy. A popular form of resistance to recognition technology is sought in strategies of masking and camouflage. Zach Blas, Leo Selvaggio, Sterling Crispin and Adam Harvey are among a group of internationally acclaimed artists who have developed subversive anti-facial recognition masks that disrupt identification technologies. This paper examines the ontological underpinnings of these popular and widely exhibited mask projects. Over and against a binary understanding and criticism of identity recognition technology, I propose to take a relational turn to reimagine these technologies not as an object for our eyes, but as a relationship between living organisms and things. A relational perspective cuts through dualist and anthropocentric conceptions of recognition technology opening pathways to intersectional forms of resistance and critique. Moreover, if human-machine relationships are to be understood as coming into being in mutual dependency, if the boundaries between online and offline are always already blurred, if the human and the machine live intertwined lives and it is no longer clear where the one stops and the other starts, we need to revise our understanding of the self. A relational understanding of recognition technology moves away from a notion of the self as an isolated and demarcated entity in favour of an understanding of the self as relationally connected, embedded and interdependent. This could alter the way we relate to machines and multiplies the lines of flight we can take out of a culture of calculated settings.
DOCUMENT
Twirre V2 is the evolution of an architecture for mini-UAV platforms which allows automated operation in both GPS-enabled and GPSdeprived applications. This second version separates mission logic, sensor data processing and high-level control, which results in reusable software components for multiple applications. The concept of Local Positioning System (LPS) is introduced, which, using sensor fusion, would aid or automate the flying process like GPS currently does. For this, new sensors are added to the architecture and a generic sensor interface together with missions for landing and following a line have been implemented. V2 introduces a software modular design and new hardware has been coupled, showing its extensibility and adaptability
DOCUMENT
The project X-TEAM D2D (extended ATM for door-to-door travel) has been funded by SESAR JU in the framework of the research activities devoted to the investigation of integration of Air Traffic Management (ATM) and aviation into a wider transport system able to support the implementation of the door-to-door (D2D) travel concept. The project defines a concept for the seamless integration of ATM and Air Transport into an intermodal network, including other available transportation means, such as surface and waterways, to contribute to the 4 h door-to-door connectivity targeted by the European Commission in the ACARE SRIA FlightPath 2050 goals. In particular, the project focused on the design of a concept of operations for urban and extended urban (up to regional) integrated mobility, taking into account the evolution of transportation and passengers service scenarios for the next decades, according to baseline (2025), intermediate (2035) and final target (2050) time horizons. The designed ConOps encompassed both the transportation platforms integration concepts and the innovative seamless Mobility as a Service, integrating emerging technologies, such as Urban Air Mobility (e.g., electric vertical take-off and landing vehicles) and new mobility forms (e.g., micromobility vehicles) into the intermodal traffic network, including Air Traffic Management (ATM) and Unmanned Traffic Management (UTM). The developed concept has been evaluated against existing KPAs and KPIs, implementing both qualitative and quantitative performance assessment approaches, while also considering specific performance metrics related to transport integration efficiency from the passenger point of view, being the proposed solution designed to be centered around the passenger needs. The aim of this paper is to provide a description of the activities carried out in the project and to present at high level the related outcomes.
DOCUMENT