Urban environments are full of noise and obstacles, and therefore potentially dangerous and difficult to navigate for the visually impaired. Using Bluetooth beacons and a smartphone app we guide them through these environments by providing the information needed for that specific location. We present the preliminary results concerning the usability of our approach.
This setup manual is meant to build the hardware for the CHARISMA setup, which contains the SPOT robot, backpack + GPS, gas sensor and beacon. The CHARISMA Demo Manual (KP01) will help to understand how to use software with the setup for autonomous exploration.
MULTIFILE
In de MKB-maakindustrie zijn aanzienlijke kosten gemoeid met het intern transport van goederen en materialen. Het belang van gebruik van mobiele robots voor interne logistieke processen neemt dan ook razendsnel toe. Men wil betaalbare mobiele robotsystemen die betrouwbaar kunnen werken en navigeren binnen de unieke omgeving van de eigen werkvloer. Voor gerobotiseerde oplossingen wil en kan de MKB-maakindustrie echter niet afhankelijk zijn van één leverancier. Er is immers geen omgeving die geheel is toegespitst op en aangepast aan het gebruik van robots zoals in grootschalige logistieke bedrijven. Daarom is inzet van combinaties van robots van verschillende leveranciers met elk verschillende functionaliteiten noodzakelijk. Probleem is echter dat roboticaleveranciers specifieke verkeersmanagementsystemen (fleetmanagement) leveren en ook de interactie van robots met ERP (Enterprise Resource Planning) systemen, liften, deuren etc. op hun eigen wijze implementeren. Er bestaat geen generiek of geïntegreerd fleetmanagement systeem, waardoor de diverse typen robots nu letterlijk onafhankelijk van elkaar opereren. Dit resulteert in inefficiënt robotverkeer met een groot risico op verkeersproblemen, hinder voor personeel en dure parallelle koppelingen met interfaces (met deuren, liften etc.). Dit leidt tot verwarring, onzekerheid en potentiële veiligheidsproblemen bij werknemers op de werkvloer. Ambitie van het project Let’s Move IT is om verschillende fabricaten en typen mobiele robots (met elk hun eigen logistieke taken) beter met elkaar te laten communiceren en samenwerken. In het project wordt daartoe gewerkt aan integraal verkeersmanagement, modulaire interfaces en slimme gecombineerde omgevingsinterpretatie. Zo kunnen logistieke robots veilig, flexibel, robuust en adaptief opereren in een steeds veranderende productieomgeving in aanwezigheid van mensen. Het project is een samenwerking van Fontys Hogescholen, Haagse Hogeschool en NHL. Participerende (MKB-)bedrijven zijn werkzaam als ontwikkelaar, system integrator, toeleverancier en eindgebruiker van mobiele robotsystemen. Daarnaast zijn coöperatie Brainport Industries en Metaalunie nauw betrokken. In het project zal bestaande kennis toepasbaar worden gemaakt en zal nieuwe kennis worden ontwikkeld ten behoeve van het verkeersmanagement van meerdere fabricaten mobiele robots tegelijkertijd. Verder zal verankering van kennis en kunde in onderwijs en lectoraten plaatsvinden en een vergroting van de kwaliteit van docenten en afstudeerders. Er zullen circa 18 (docent-)onderzoekers van de hogescholen en circa 100 studenten betrokken worden, die in de vorm van studentenprojecten, stages en afstudeeronderzoeken werken aan interessante vraagstukken direct uit de beroepspraktijk.
Lack of physical activity in urban contexts is an increasing health risk in The Netherlands and Brazil. Exercise applications (apps) are seen as potential ways of increasing physical activity. However, physical activity apps in app stores commonly lack a scientific base. Consequently, it remains unknown what specific content messages should contain and how messages can be personalized to the individual. Moreover, it is unknown how their effects depend on the physical urban environment in which people live and on personal characteristics and attitudes. The current project aims to get insight in how mobile personalized technology can motivate urban residents to become physically active. More specifically, we aim to gain insight into the effectiveness of elements within an exercise app (motivational feedback, goal setting, individualized messages, gaming elements (gamification) for making people more physically active, and how the effectiveness depends on characteristics of the individual and the urban setting. This results in a flexible exercise app for inactive citizens based on theories in data mining, machine learning, exercise psychology, behavioral change and gamification. The sensors on the mobile phone, together with sensors (beacons) in public spaces, combined with sociodemographic and land use information will generate a massive amount of data. The project involves analysis in two ways. First, a unique feature of our project is that we apply machine learning/data mining techniques to optimize the app specification for each individual in a dynamic and iterative research design (Sequential Multiple Assignment Randomised Trial (SMART)), by testing the effectiveness of specific messages given personal and urban characteristics. Second, the implementation of the app in Sao Paolo and Amsterdam will provide us with (big) data on use of functionalities, physical activity, motivation etc. allowing us to investigate in detail the effects of personalized technology on lifestyle in different geographical and cultural contexts.
Lack of physical activity in urban contexts is an increasing health risk in The Netherlands and Brazil. Exercise applications (apps) are seen as potential ways of increasing physical activity. However, physical activity apps in app stores commonly lack a scientific base. Consequently, it remains unknown what specific content messages should contain and how messages can be personalized to the individual. Moreover, it is unknown how their effects depend on the physical urban environment in which people live and on personal characteristics and attitudes. The current project aims to get insight in how mobile personalized technology can motivate urban residents to become physically active. More specifically, we aim to gain insight into the effectiveness of elements within an exercise app (motivational feedback, goal setting, individualized messages, gaming elements (gamification) for making people more physically active, and how the effectiveness depends on characteristics of the individual and the urban setting. This results in a flexible exercise app for inactive citizens based on theories in data mining, machine learning, exercise psychology, behavioral change and gamification. The sensors on the mobile phone, together with sensors (beacons) in public spaces, combined with sociodemographic and land use information will generate a massive amount of data. The project involves analysis in two ways. First, a unique feature of our project is that we apply machine learning/data mining techniques to optimize the app specification for each individual in a dynamic and iterative research design (Sequential Multiple Assignment Randomised Trial (SMART)), by testing the effectiveness of specific messages given personal and urban characteristics. Second, the implementation of the app in Sao Paolo and Amsterdam will provide us with (big) data on use of functionalities, physical activity, motivation etc. allowing us to investigate in detail the effects of personalized technology on lifestyle in different geographical and cultural contexts.