OBJECTIVE: To determine whether aerobic capacity is normal in boys with different types of hemophilia compared with healthy peers and whether the level of aerobic capacity correlates with the amount of physical activity, joint health status, muscle strength, and anthropometrics.STUDY DESIGN: 47 patients (mean [SD] age, 12.9 [3.2] years; age range, 8.2-17.4 years) from the "Van Creveldkliniek" of the University Medical Center Utrecht, participated. Anthropometry, muscle strength, joint impairment, functional ability, and aerobic capacity were measured. The amount of energy expenditure during daily living was assessed.RESULTS: All boys were able to perform at maximal or near-maximal level on exercise tests, and none of them reported bleeds or other adverse events. Relative peak oxygen, peak heart rate, and peak working capacity were significantly lower compared with healthy control subjects. 30% had Z-scores >2 for weight. Total muscle strength was normal, and almost no joint impairment and no decrease in functional ability were found.CONCLUSION: The aerobic capacity of children with hemophilia is still lower than the normal population, whereas their overall muscle strength is comparable with healthy peers. The functional ability does not differ from healthy peers, and joint health status showed very minor impairments. A substantial proportion of Dutch children with hemophilia was overweight, without showing a reduction in the amount of self-reported physical activities.
Between 2009 and 2013 a project has been executed in the Utrecht region to strengthen the workplace innovation capacity of SMEs (My Company 2.0). The participating companies were asked to fill in a questionnaire on the workplace innovation capacity of the company at two moments: at the beginning (T0) and at the end of the project (T1). The workplace innovation capacity was measured with questions about the organization (responds on changing demands in the environment), labor (employee flexibility), strategy (innovation with other companies) and market (improvement or renewal of products/services). We divided the companies (n=103) into two groups, namely companies that implemented an intervention an companies that did not. We found that the companies that received an intervention during the project had a significantly higher score with regard to the workplace innovation capacity at T1 compared to T0. The companies in which no intervention took place had a small (not significant) decrease in workplace innovation capacity between the baseline- (T0) and the post- test (T1). We also compared the data with data from a national reference population. It appeared that the companies in our study scored higher in workplace innovation capacity at both measurements (T0 and T1) than the reference population
Although there is some evidence that total dietary antioxidant capacity (TDAC) is inversely associated with the presence of obesity, no longitudinal studies have been performed investigating the effect of TDAC on comprehensive measures of body composition over time. In this study, we included 4595 middle-aged and elderly participants from the Rotterdam Study, a population-based cohort. We estimated TDAC among these individuals by calculating a ferric reducing ability of plasma (FRAP) score based on data from food-frequency questionnaires. Body composition was assessed by means of dual X-ray absorptiometry at baseline and every subsequent 3-5 years. From these data, we calculated fat mass index (FMI), fat-free mass index (FFMI), android-to-gynoid fat ratio (AGR), body fat percentage (BF%) and body mass index (BMI). We also assessed hand grip strength at two time points and prevalence of sarcopenia at one time point in a subset of participants. Data were analyzed using linear mixed models or multinomial logistic regression models with multivariable adjustment. We found that higher FRAP score was associated with higher FFMI (0.091 kg/m2 per standard deviation (SD) higher FRAP score, 95% CI 0.031; 0.150), lower AGR (-0.028, 95% CI -0.053; -0.003), higher BMI (0.115, 95% CI 0.020; 0.209) and lower BF% (-0.223, 95% CI -0.383; -0.064) across follow-up after multivariable adjustment. FRAP score was not associated with hand grip strength or sarcopenia. Additional adjustment for adherence to dietary guidelines and exclusion of individuals with comorbid disease at baseline did not change our results. In conclusion, dietary intake of antioxidants may positively affect the amount of lean mass and overall body composition among the middle-aged and elderly.
The maximum capacity of the road infrastructure is being reached due to the number of vehicles that are being introduced on Dutch roads each day. One of the plausible solutions to tackle congestion could be efficient and effective use of road infrastructure using modern technologies such as cooperative mobility. Cooperative mobility relies majorly on big data that is generated potentially by millions of vehicles that are travelling on the road. But how can this data be generated? Modern vehicles already contain a host of sensors that are required for its operation. This data is typically circulated within an automobile via the CAN bus and can in-principle be shared with the outside world considering the privacy aspects of data sharing. The main problem is, however, the difficulty in interpreting this data. This is mainly because the configuration of this data varies between manufacturers and vehicle models and have not been standardized by the manufacturers. Signals from the CAN bus could be manually reverse engineered, but this process is extremely labour-intensive and time-consuming. In this project we investigate if an intelligent tool or specific test procedures could be developed to extract CAN messages and their composition efficiently irrespective of vehicle brand and type. This would lay the foundations that are required to generate big data-sets from in-vehicle data efficiently.
This project develops a European network for transdisciplinary innovation in artistic engagement as a catalyst for societal transformation, focusing on immersive art. It responds to the professionals in the field’s call for research into immersive art’s unique capacity to ‘move’ people through its multisensory, technosocial qualities towards collective change. The project brings together experts leading state-of-the-art research and practice in related fields with an aim to develop trajectories for artistic, methodological, and conceptual innovation for societal transformation. The nascent field of immersive art, including its potential impact on society, has been identified as a priority research area on all local-to-EU levels, but often suffers from the common (mis)perception as being technological spectacle prioritising entertainment values. Many practitioners create immersive art to enable novel forms of creative engagement to address societal issues and enact change, but have difficulty gaining recognition and support for this endeavour. A critical challenge is the lack of knowledge about how their predominantly sensuous and aesthetic experience actually lead to collective change, which remains unrecognised in the current systems of impact evaluation predicated on quantitative analysis. Recent psychological insights on awe as a profoundly transformative emotion signals a possibility to address this challenge, offering a new way to make sense of the transformational effect of directly interacting with such affective qualities of immersive art. In parallel, there is a renewed interest in the practice of cultural mediation, which brings together different stakeholders to facilitate negotiation towards collective change in diverse domains of civic life, often through creative engagements. Our project forms strategic grounds for transdisciplinary research at the intersection between these two developments. We bring together experts in immersive art, psychology, cultural mediation, digital humanities, and design across Europe to explore: How can awe-experiences be enacted in immersive art and be extended towards societal transformation?
Climate change is one of the most critical global challenges nowadays. Increasing atmospheric CO2 concentration brought by anthropogenic emissions has been recognized as the primary driver of global warming. Therefore, currently, there is a strong demand within the chemical and chemical technology industry for systems that can covert, capture and reuse/recover CO2. Few examples can be seen in the literature: Hamelers et al (2013) presented systems that can use CO2 aqueous solutions to produce energy using electrochemical cells with porous electrodes; Legrand et al (2018) has proven that CDI can be used to capture CO2 without solvents; Shu et al (2020) have used electrochemical systems to desorb (recover) CO2 from an alkaline absorbent with low energy demand. Even though many efforts have been done, there is still demand for efficient and market-ready systems, especially related to solvent-free CO2 capturing systems. This project intends to assess a relatively efficient technology, with low-energy costs which can change the CO2 capturing market. This technology is called whorlpipe. The whorlpipe, developed by Viktor Schauberger, has shown already promising results in reducing the energy and CO2 emissions for water pumping. Recently, studies conducted by Wetsus and NHL Stenden (under submission), in combination with different companies (also members in this proposal) have shown that vortices like systems, like the Schauberger funnel, and thus “whorlpipe”, can be fluid dynamically represented using Taylor-Couette flows. This means that such systems have a strong tendency to form vortices like fluid-patterns close to their air-water interface. Such flow system drastically increase advection. Combined with their higher area to volume ratio, which increases diffusion, these systems can greatly enhance gas capturing (in liquids), and are, thus, a unique opportunity for CO2 uptake from the air, i.e. competing with systems like conventional scrubbers or bubble-based aeration.