How to reduce carbon emissions and contribute to climate change mitigation? For years the carbon-intensive travel industry has been struggling with this question. Research has addressed the relation between climate change and tourism (e.g., Gössling et al 2015; Becken, 2013; Gössling, 2010; Gössling et al 2010; Bows et al, 2009). Their work produced models and measurement methods, and recommended mitigation policies and actions (Scott, 2011; Dwyer et al, 2010; Gössling et al 2010; McKercher, 2010). Major industry players have since adopted carbon reduction measures in their CSR policies (Thomas Cook group, 2015; TUI Group, 2015). However, the bulk of the travel industry consists of SMEs that typically have limited resources available for CSR. CARMACAL may offer a solution for the sector at large. CARMACAL is a user-friendly application that enables tour operators to accurately measure the complete carbon footprint of their tour packages and integrate carbon management in their business (CSTT, 2016a). The industry acknowledged its relevance: in April 2016 CARMACAL won the WTTC Tourism for Tomorrow Innovation Award
MULTIFILE
During crime scene investigations, numerous traces are secured and may be used as evidence for the evaluation of source and/or activity level propositions. The rapid chemical analysis of a biological trace enables the identification of body fluids and can provide significant donor profiling information, including age, sex, drug abuse, and lifestyle. Such information can be used to provide new leads, exclude from, or restrict the list of possible suspects during the investigative phase. This paper reviews the state-of-the-art labelling techniques to identify the most suitable visual enhancer to be implemented in a lateral flow immunoassay setup for the purpose of trace identification and/or donor profiling. Upon comparison, and with reference to the strengths and limitations of each label, the simplistic one-step analysis of noncompetitive lateral flow immunoassay (LFA) together with the implementation of carbon nanoparticles (CNPs) as visual enhancers is proposed for a sensitive, accurate, and reproducible in situ trace analysis. This approach is versatile and stable over different environmental conditions and external stimuli. The findings of the present comparative analysis may have important implications for future forensic practice. The selection of an appropriate enhancer is crucial for a well-designed LFA that can be implemented at the crime scene for a time- and cost-efficient investigation.
One of the mission-driven innovation policies of the Netherlands is energy transition which sets, among others, the challenge for a carbon-neutral built environment in 2050. Around 41% of Dutch houses do not yet have a registered energy label, and approximately 31% of the registered houses have label C or lower. This calls for action within the housing renovation industry. Bound to the 70 percent rule, a renovation plan requires full (or at least 70 percent) agreement on the renovation between relevant parties, including residents. In practice, agreement indicators focus mostly on economic and energy aspects. When indicators include people’s needs and preferences, it is expected to speed participation and agreement, increasing residents’ satisfaction and enhances the trust in public institutions. Tsavo was founded in 2015 to organise the sustainability of buildings for ambitious clients. Its sustainability process aims to accelerate renovation by keeping at their core value the social needs and preferences of residents. In this project Tsavo and TU Delft work together to optimise the sustainability process so, it includes everyone’s input and results in a sustainability plan that represents everyone. Tsavo’s role will be key in keeping the balance between both a sustainable renovation service that is cheaper and fast yet also attractive and with an impact on the quality of living. In this project, Tsavo’s sustainable renovation projects will be used to implement methods that focus on increasing participation and residents’ satisfaction. TU Delft will explore principles of attractive, accessible and representative activities to stimulate residents to decide on a renovation plan that is essential and meaningful to all.
In het project ’Duurzaam vlees, natuurlijk!’ werken veehouders, keurmerken, regionale en landelijke branche- en ketenorganisaties, consumentenorganisaties en WUR samen met de vier Groene Hogescholen (Aeres, HAS, Inholland, VHL) aan een roadmap voor het meten en communiceren van duurzaamheid in de veehouderij vanuit een integrale benadering. In de verduurzaming van de veehouderij nemen klimaateffecten een belangrijke plaats in met de Carbon Footprint als leidend criterium. Het vastleggen en toerekenen van emissies is lastig en een lage Carbon Footprint staat vaak op spanning met andere duurzaamheidscriteria zoals biodiversiteit en extensief weiden. Er zijn ook andere thema’s van maatschappelijk belang, zoals de relatie burger-boer, dierenwelzijn, landschap, natuur, biodiversiteit en cultuurhistorie. De diverse aspecten van duurzaamheid zijn terug te vinden in de verschillende afzonderlijke keurmerken die ontwikkeld zijn. Dit project heeft tot doel een integraal overzicht te vormen van keurmerken, meetmethoden en duurzaamheidscriteria voor de veehouderij, percepties van consumenten en het inzichtelijk maken van de spanningsvelden daartussen. Vanuit het overzicht wordt een roadmap ontworpen voor doorontwikkeling van bestaande keurmerken t.a.v. criteria, methodologie, allocatie, om aansluiting te vinden bij de behoeften van verschillende doelgroepen, waaronder consumenten en zakelijk afnemers. Daarbij worden alle sectoren binnen de vlees-producerende veehouderij in ogenschouw genomen, waarbij er in het bijzonder aandacht is voor duurzame productie van vlees van rundvee.
About half of the e-waste generated in The Netherlands is properly documented and collected (184kT in 2018). The amount of PCBs in this waste is projected to be about 7kT in 2018 with a growth rate of 3-4%. Studies indicate that a third of the weight of a PCB is made or recoverable and critical metals which we need as resources for the various societal challenges facing us in the future. Recycling a waste PCB today means first shredding it and then processing it for material recovery mostly via non-selective pyrometallurgical methods. Sorting the PCBs in quality grades (wastebins) before shredding would however lead to more flexibility in selecting when and which recovery metallurgy is to be used. The yield and diversity of the recovered metals increases as a result, especially when high-grade recycling techniques are used. Unfortunately, the sorting of waste PCBs is not easily automated as an experienced operator eye is needed to classify the very inhomogeneous waste-PCB stream in wastebins. In this project, a knowledge institution partners with an e-waste processor, a high-grade recycling technology startup and a developer of waste sorting systems to investigate the efficiency of methods for sensory sorting of waste PCBs. The knowledge gained in this project will lead towards a waste PCB sorting demonstrator as a follow-up project.