Collaboration between university and industry has brought societal and educational benefits by promoting research and innovation, providing industry training, and promoting access to resources and technology for both academia and industry. University, industry, and government collaboration known as the triple helix was proposed in the 1990s. However, industry and university collaboration has had a long history with best practices being updated as we learn more about specific fields, needs of collaborators, and advances in research and technology.This case study aims to find the best practices for collaboration between education and industry in a project-based educational program known as Professional Practice for students studying in the field of information technology. During this four-week program, students worked on assignments formulated by the participating companies. They were guided by company-assigned supervisors, who were interviewed before and after the program. The students too were asked to fill out surveys before and after the program. From the analyses of the results of the interviews and surveys, several recommendations and ways to improve collaboration between education and industry are presented.
MULTIFILE
Intermediate reports of my PhD project which reports the results of a Stated Preference Experiment conducted within 18 companies within the chemical industry
In het kader van actualisering van voorlichtingspublicaties (een samenwerkingsverband tussen FDP, FME, NIL, NIMR, Syntens en TNO Industrie & Techniek), is deze voorlichtingspublicatie aangepast aan de huidige stand der techniek. De originele publicatie is in 1992 tot stand gekomen door samenwerking van de Vereniging FME/CWM en het Nederlands Instituut voor Lastechniek in het kader van het FME/NIL project "Het lijmen als verbindingstechniek".
Size measurement plays an essential role for micro-/nanoparticle characterization and property evaluation. Due to high costs, complex operation or resolution limit, conventional characterization techniques cannot satisfy the growing demand of routine size measurements in various industry sectors and research departments, e.g., pharmaceuticals, nanomaterials and food industry etc. Together with start-up SeeNano and other partners, we will develop a portable compact device to measure particle size based on particle-impact electrochemical sensing technology. The main task in this project is to extend the measurement range for particles with diameters ranging from 20 nm to 20 um and to validate this technology with realistic samples from various application areas. In this project a new electrode chip will be designed and fabricated. It will result in a workable prototype including new UMEs (ultra-micro electrode), showing that particle sizing can be achieved on a compact portable device with full measuring range. Following experimental testing with calibrated particles, a reliable calibration model will be built up for full range measurement. In a further step, samples from partners or potential customers will be tested on the device to evaluate the application feasibility. The results will be validated by high-resolution and mainstream sizing techniques such as scanning electron microscopy (SEM), dynamic light scattering (DLS) and Coulter counter.
Currently, many novel innovative materials and manufacturing methods are developed in order to help businesses for improving their performance, developing new products, and also implement more sustainability into their current processes. For this purpose, additive manufacturing (AM) technology has been very successful in the fabrication of complex shape products, that cannot be manufactured by conventional approaches, and also using novel high-performance materials with more sustainable aspects. The application of bioplastics and biopolymers is growing fast in the 3D printing industry. Since they are good alternatives to petrochemical products that have negative impacts on environments, therefore, many research studies have been exploring and developing new biopolymers and 3D printing techniques for the fabrication of fully biobased products. In particular, 3D printing of smart biopolymers has attracted much attention due to the specific functionalities of the fabricated products. They have a unique ability to recover their original shape from a significant plastic deformation when a particular stimulus, like temperature, is applied. Therefore, the application of smart biopolymers in the 3D printing process gives an additional dimension (time) to this technology, called four-dimensional (4D) printing, and it highlights the promise for further development of 4D printing in the design and fabrication of smart structures and products. This performance in combination with specific complex designs, such as sandwich structures, allows the production of for example impact-resistant, stress-absorber panels, lightweight products for sporting goods, automotive, or many other applications. In this study, an experimental approach will be applied to fabricate a suitable biopolymer with a shape memory behavior and also investigate the impact of design and operational parameters on the functionality of 4D printed sandwich structures, especially, stress absorption rate and shape recovery behavior.
Denim Democracy from the Alliance for Responsible Denim (ARD) is an interactive exhibition that celebrates the journey and learning of ARD members, educates visitors about sustainable denim and highlights how companies collaborate together to achieve results. Through sight, sound and tactile sensations, the visitor experiences and fully engages sustainable denim production. The exhibition launches in October 2018 in Amsterdam and travels to key venues and locations in the Netherlands until April 2019. As consumers, we love denim but the denim industry, like other sub-sectors in the textile, apparel and footwear industries, faces many complex sustainability challenges and has been criticized for its polluting and hazardous production practices. The Alliance for Responsible Denim project brought leading denim brands, suppliers and stakeholders together to collectively address these issues and take initial steps towards improving the ecological sustainability impact of denim production. Sustainability challenges are considered very complex and economically undesirable for individual companies to address alone. In denim, small and medium sized denim firms face specific challenges, such as lower economies of scale and lower buying power to affect change in practices. There is great benefit in combining denim companies' resources and knowledge so that collective experimentation and learning can lift the sustainability standards of the industry and lead to the development of common standards and benchmarks on a scale that matters. If meaningful, transformative industrial change is to be made, then it calls for collaboration between denim industry stakeholders that goes beyond supplier-buyer relations and includes horizontal value chain collaboration of competing large and small denim brands. However collaboration between organizations, and especially between competitors, is highly complex and prone to failure. The research behind the Alliance for Responsible Denim project asked a central research question: how do competitors effectively collaborate together to create common, industry standards on resource use and benchmarks for improved ecological sustainability? To answer this question, we used a mixed-method, action research approach. The Alliance for Responsible Denim project mobilized and facilitated denim brands to collectively identify ways to reduce the use of water and chemicals in denim production and then aided them to implement these practices individually in their respective firms.