Why are risk decisions sometimes rather irrational and biased than rational and effective? Can we educate and train vocational students and professionals in safety and security management to let them make smarter risk decisions? This paper starts with a theoretical and practical analysis. From research literature and theory we develop a two-phase process model of biased risk decision making, focussing on two critical professional competences: risk intelligence and risk skill. Risk intelligence applies to risk analysis on a mainly cognitive level, whereas risk skill covers the application of risk intelligence in the ultimate phase of risk decision making: whether or not a professional risk manager decides to intervene, how and how well. According to both phases of risk analysis and risk decision making the main problems are described and illustrated with examples from safety and security practice. It seems to be all about systematically biased reckoning and reasoning.
DOCUMENT
Business decisions and business logic are an important part of an organization’s daily activities. In the not so near past they were modelled as integrative part of business processes, however, during the last years, they are managed as a separate entity. Still, decisions and underlying business logic often remain a black box. Therefore, the call for transparency increases. Current theory does not provide a measurable and quantitative way to measure transparency for business decisions. This paper extends the understanding of different views on transparency with regards to business decisions and underlying business logic and presents a framework including Key Transparency Indicators (KTI) to measure the transparency of business decisions and business logic. The framework is validated by means of an experiment using case study data. Results show that the framework and KTI’s are useful to measure transparency. Further research will focus on further refinement of the measurements as well as further validation of the current measurements.
DOCUMENT
The user’s experience with a recommender system is significantly shaped by the dynamics of user-algorithm interactions. These interactions are often evaluated using interaction qualities, such as controllability, trust, and autonomy, to gauge their impact. As part of our effort to systematically categorize these evaluations, we explored the suitability of the interaction qualities framework as proposed by Lenz, Dieffenbach and Hassenzahl. During this examination, we uncovered four challenges within the framework itself, and an additional external challenge. In studies examining the interaction between user control options and interaction qualities, interdependencies between concepts, inconsistent terminology, and the entity perspective (is it a user’s trust or a system’s trustworthiness) often hinder a systematic inventory of the findings. Additionally, our discussion underscored the crucial role of the decision context in evaluating the relation of algorithmic affordances and interaction qualities. We propose dimensions of decision contexts (such as ‘reversibility of the decision’, or ‘time pressure’). They could aid in establishing a systematic three-way relationship between context attributes, attributes of user control mechanisms, and experiential goals, and as such they warrant further research. In sum, while the interaction qualities framework serves as a foundational structure for organizing research on evaluating the impact of algorithmic affordances, challenges related to interdependencies and context-specific influences remain. These challenges necessitate further investigation and subsequent refinement and expansion of the framework.
LINK
This paper investigates how management accounting and control systems (operationalized by using Simons’ (1995a) levers of control framework) can be used as devices to support public value creation and as such it contributes to the literature on public value accounting. Using a mixed methods case study approach, including documentary analysis and semi-structured interviews, we found diverging uses of control systems in the Dutch university of applied sciences we investigated. While belief and interactive control systems are used intensively for strategy change and implementation, diagnostic controls were used mainly at the decentral level and seen as devices to make sure that operational and financial boundaries were not crossed. Therefore, belief and interactive control systems lay the foundation for the implementation of a new strategy, in which concepts of public value play a large role, using diagnostic controls to constrain actions at the operational level. We also found that whereas the institution wanted to have interaction with the external stakeholders, in daily practice this takes place only at the phase of strategy formulation, but not in the phase of intermediate strategy evaluation.
MULTIFILE
Analyzing historical decision-related data can help support actual operational decision-making processes. Decision mining can be employed for such analysis. This paper proposes the Decision Discovery Framework (DDF) designed to develop, adapt, or select a decision discovery algorithm by outlining specific guidelines for input data usage, classifier handling, and decision model representation. This framework incorporates the use of Decision Model and Notation (DMN) for enhanced comprehensibility and normalization to simplify decision tables. The framework’s efficacy was tested by adapting the C4.5 algorithm to the DM45 algorithm. The proposed adaptations include (1) the utilization of a decision log, (2) ensure an unpruned decision tree, (3) the generation DMN, and (4) normalize decision table. Future research can focus on supporting on practitioners in modeling decisions, ensuring their decision-making is compliant, and suggesting improvements to the modeled decisions. Another future research direction is to explore the ability to process unstructured data as input for the discovery of decisions.
MULTIFILE
A transition of today’s energy system towards renewableresources, requires solutions to match renewable energy generationwith demand over time. These solutions include smartgrids, demand-side management and energy storage. Energycan be stored during moments of overproduction of renewableenergy and used from the storage during moments ofinsufficient production. Allocation in real time of generatedenergy towards controlled appliances or storage chargers, isdone by a smart control system which makes decisions basedon predictions (of upcoming generation and demand) andinformation of the actual condition of storages.
MULTIFILE
This paper contributes to the knowledge of the performativity of accounting by exploring the unexpected consequences of a management accounting and control system (MAC) as designed in a large public organization. In an organization in the Dutch sector of Nursing Homes, Homes for the Elderly and Homecare MAC turns from a system into an actor-network. Rather than being a stable answer machine in the context of decision making or a ready-made tool for performance management by which distant (top) managers and controllers aim to measure and manage performance from time-space distances, MAC is grounded in relations and performatively develops. As such, it becomes multiple. The study shows how the performativity of MAC goes beyond its functionality. Though originating from MAC’s functional design, MAC’s performativity is not simply about the degree to which it realizes the intentions of its designers, but is about its dynamic relational consequences. Controllers should mediate in the dynamics of MAC so that processes of learning are enhanced and the quality and efficiency of the care practices develop
LINK
The built environment requires energy-flexible buildings to reduce energy peak loads and to maximize the use of (decentralized) renewable energy sources. The challenge is to arrive at smart control strategies that respond to the increasing variations in both the energy demand as well as the variable energy supply. This enables grid integration in existing energy networks with limited capacity and maximises use of decentralized sustainable generation. Buildings can play a key role in the optimization of the grid capacity by applying demand-side management control. To adjust the grid energy demand profile of a building without compromising the user requirements, the building should acquire some energy flexibility capacity. The main ambition of the Brains for Buildings Work Package 2 is to develop smart control strategies that use the operational flexibility of non-residential buildings to minimize energy costs, reduce emissions and avoid spikes in power network load, without compromising comfort levels. To realise this ambition the following key components will be developed within the B4B WP2: (A) Development of open-source HVAC and electric services models, (B) development of energy demand prediction models and (C) development of flexibility management control models. This report describes the developed first two key components, (A) and (B). This report presents different prediction models covering various building components. The models are from three different types: white box models, grey-box models, and black-box models. Each model developed is presented in a different chapter. The chapters start with the goal of the prediction model, followed by the description of the model and the results obtained when applied to a case study. The models developed are two approaches based on white box models (1) White box models based on Modelica libraries for energy prediction of a building and its components and (2) Hybrid predictive digital twin based on white box building models to predict the dynamic energy response of the building and its components. (3) Using CO₂ monitoring data to derive either ventilation flow rate or occupancy. (4) Prediction of the heating demand of a building. (5) Feedforward neural network model to predict the building energy usage and its uncertainty. (6) Prediction of PV solar production. The first model aims to predict the energy use and energy production pattern of different building configurations with open-source software, OpenModelica, and open-source libraries, IBPSA libraries. The white-box model simulation results are used to produce design and control advice for increasing the building energy flexibility. The use of the libraries for making a model has first been tested in a simple residential unit, and now is being tested in a non-residential unit, the Haagse Hogeschool building. The lessons learned show that it is possible to model a building by making use of a combination of libraries, however the development of the model is very time consuming. The test also highlighted the need for defining standard scenarios to test the energy flexibility and the need for a practical visualization if the simulation results are to be used to give advice about potential increase of the energy flexibility. The goal of the hybrid model, which is based on a white based model for the building and systems and a data driven model for user behaviour, is to predict the energy demand and energy supply of a building. The model's application focuses on the use case of the TNO building at Stieltjesweg in Delft during a summer period, with a specific emphasis on cooling demand. Preliminary analysis shows that the monitoring results of the building behaviour is in line with the simulation results. Currently, development is in progress to improve the model predictions by including the solar shading from surrounding buildings, models of automatic shading devices, and model calibration including the energy use of the chiller. The goal of the third model is to derive recent and current ventilation flow rate over time based on monitoring data on CO₂ concentration and occupancy, as well as deriving recent and current occupancy over time, based on monitoring data on CO₂ concentration and ventilation flow rate. The grey-box model used is based on the GEKKO python tool. The model was tested with the data of 6 Windesheim University of Applied Sciences office rooms. The model had low precision deriving the ventilation flow rate, especially at low CO2 concentration rates. The model had a good precision deriving occupancy from CO₂ concentration and ventilation flow rate. Further research is needed to determine if these findings apply in different situations, such as meeting spaces and classrooms. The goal of the fourth chapter is to compare the working of a simplified white box model and black-box model to predict the heating energy use of a building. The aim is to integrate these prediction models in the energy management system of SME buildings. The two models have been tested with data from a residential unit since at the time of the analysis the data of a SME building was not available. The prediction models developed have a low accuracy and in their current form cannot be integrated in an energy management system. In general, black-box model prediction obtained a higher accuracy than the white box model. The goal of the fifth model is to predict the energy use in a building using a black-box model and measure the uncertainty in the prediction. The black-box model is based on a feed-forward neural network. The model has been tested with the data of two buildings: educational and commercial buildings. The strength of the model is in the ensemble prediction and the realization that uncertainty is intrinsically present in the data as an absolute deviation. Using a rolling window technique, the model can predict energy use and uncertainty, incorporating possible building-use changes. The testing in two different cases demonstrates the applicability of the model for different types of buildings. The goal of the sixth and last model developed is to predict the energy production of PV panels in a building with the use of a black-box model. The choice for developing the model of the PV panels is based on the analysis of the main contributors of the peak energy demand and peak energy delivery in the case of the DWA office building. On a fault free test set, the model meets the requirements for a calibrated model according to the FEMP and ASHRAE criteria for the error metrics. According to the IPMVP criteria the model should be improved further. The results of the performance metrics agree in range with values as found in literature. For accurate peak prediction a year of training data is recommended in the given approach without lagged variables. This report presents the results and lessons learned from implementing white-box, grey-box and black-box models to predict energy use and energy production of buildings or of variables directly related to them. Each of the models has its advantages and disadvantages. Further research in this line is needed to develop the potential of this approach.
DOCUMENT
Background: The substitution of healthcare is a way to control rising healthcare costs. The Primary Care Plus (PC+) intervention of the Dutch ‘Blue Care’ pioneer site aims to achieve this feat by facilitating consultations with medical specialists in the primary care setting. One of the specialties involved is dermatology. This study explores referral decisions following dermatology care in PC+ and the influence of predictive patient and consultation characteristics on this decision. Methods: This retrospective study used clinical data of patients who received dermatology care in PC+ between January 2015 and March 2017. The referral decision following PC+, (i.e., referral back to the general practitioner (GP) or referral to outpatient hospital care) was the primary outcome. Stepwise logistic regression modelling was used to describe variations in the referral decisions following PC+, with patient age and gender, number of PC+ consultations, patient diagnosis and treatment specialist as the predicting factors. Results: A total of 2952 patients visited PC+ for dermatology care. Of those patients with a registered referral, 80.2% (N = 2254) were referred back to the GP, and 19.8% (N = 558) were referred to outpatient hospital care. In the multivariable model, only the treating specialist and patient’s diagnosis independently influenced the referral decisions following PC+. Conclusion: The aim of PC+ is to reduce the number of referrals to outpatient hospital care. According to the results, the treating specialist and patient diagnosis influence referral decisions. Therefore, the results of this study can be used to discuss and improve specialist and patient profiles for PC+ to further optimise the effectiveness of the initiative.
DOCUMENT
A software system is described that uses the agent concept in the Cell Control layer. Important design goals are: the system continues as good as possible after a process crash, crashed processes are recreated whenever possible, and equivalent workstations are allocated dynamically. This project is carried out mainly to investigate whether the agent concept is applicable in such a situation. The system is not operational yet, but will be built in the period ahead. In addition, a graphic simulator for a small manufacturing system will be built for testing the agent structure.
DOCUMENT