In this case study, we want to gain insights into how residents of three municipalities communicate about the new murder scenario of the cold case of Marianne Vaatstra and the possibility of a large-scale DNA familial searching. We investigate how stakeholders shape their arguments in conversation with each other and with the police. We investigate the repertoires that participants use to achieve certain effects in their interactions with others in three focus groups. The results show that the analyzed repertoires are strong normative orientated. We see two aspects emerge that affect the support for large-scale DNA familial searching. These are: 1. Cautious formulations: respondents showed restraint in making personal judgments and often formulated these on behalf of others. Participants would not fully express themselves, but adjusted to what seemed the socially desirable course. 2. Collective identity: respondents focused on the similarities between themselves and the needs, interests, and goals of other participants. Participants also tried in a discursive way to convince each other to participate in the large-scale familial searching. These two major discursive activities offered the communication discipline guidance for interventions into the subsequent communication strategy.
MULTIFILE
In this case study, we want to gain insight into how residents of three municipalities communicate about the new murder scenario of the cold case of Marianne Vaatstra and the possibility of a large-scale DNA familial searching. We investigate how stakeholders shape their arguments in conversation with each other and with the police. We analyze the statements that participants use to achieve certain effects in their interactions with others in three focus groups. The results show that the analyzed statements are strong normative orientated. We see two aspects emerge that affect the support for large-scale DNA familial searching. These are: 1. Cautious formulations: respondents showed restraint in making personal judgments and often formulated these on behalf of others. Participants would not fully express themselves, but adjusted to what seemed the socially desirable course. 2. Collective identity: respondents focused on the similarities between themselves and the needs, interests, and goals of other participants. Participants also tried in a discursive way to convince each other to participate in the large-scale familial searching. These two major discursive activities offered the communication discipline guidance for interventions into the subsequent communication strategy.
To accelerate differentiation between Staphylococcus aureus and Coagulase Negative Staphylococci (CNS), this study aimed to compare six different DNA extraction methods from 2 commonly used blood culture materials, i.e. BACTEC and Bact/ALERT. Furthermore, we analyzed the effect of reduced blood culture times for detection of Staphylococci directly from blood culture material. A real-time PCR duplex assay was used to compare 6 different DNA isolation protocols on two different blood culture systems. Negative blood culture material was spiked with MRSA. Bacterial DNA was isolated with: automated extractor EasyMAG (3 protocols), automated extractor MagNA Pure LC (LC Microbiology Kit MGrade), a manual kit MolYsis Plus, and a combination between MolYsis Plus and the EasyMAG. The most optimal isolation method was used to evaluate reduced bacterial culture times. Bacterial DNA isolation with the MolYsis Plus kit in combination with the specific B protocol on the EasyMAG resulted in the most sensitive detection of S.aureus, with a detection limit of 10 CFU/ml, in Bact/ALERT material, whereas using BACTEC resulted in a detection limit of 100 CFU/ml. An initial S.aureus load of 1 CFU/ml blood can be detected after 5 hours of culture in Bact/ALERT3D by combining the sensitive isolation method and the tuf LightCycler assay.
Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.
Routine neuropathology diagnostic methods are limited to histological staining techniques or directed PCR for pathogen detection and microbial cultures of brain abscesses are negative in one-third of the cases. Fortunately, due to improvements in technology, metagenomic sequencing of a conserved bacterial gene could provide an alternative diagnostic method. For histopathological work up, formalin-fixed paraffin-embedded (FFPE) tissue with highly degraded nucleic acids is the only material being available. Innovative amplicon-specific next-generation sequencing (NGS) technology has the capability to identify pathogens based on the degraded DNA within a few hours. This approach significantly accelerates diagnostics and is particularly valuable to identify challenging pathogens. This ensures optimal treatment for the patient, minimizing unnecessary health damage. Within this project, highly conserved primers in a universal PCR will be used, followed by determining the nucleotide sequence. Based on the obtained data, it is then precisely determined which microorganism(s) is/are responsible for the infection, even in cases of co-infection with multiple pathogens. This project will focus to answer the following research question; how can a new form of rapid molecular diagnostics contribute to the identification of microbial pathogens in CNS infections? The SME partner Molecular Biology Systems B.V. (MBS) develops and sells equipment for extremely rapid execution of the commonly used PCR. In this project, the lectorate Analysis Techniques in the Life Sciences (Avans) will, in collaboration with MBS, Westerdijk Institute (WI-KNAW) and the Institute of Neuropathology (Münster, DE) establish a new molecular approach for fast diagnosis within CNS infections using this MBS technology. This enables the monitoring of infectious diseases in a fast and user-friendly manner, resulting in an improved treatment plan.
Structural Biology plays a crucial role in understanding the Chemistry of Life by providing detailed information about the three-dimensional structures of biological macromolecules such as proteins, DNA, RNA and complexes thereof. This knowledge allows researchers to understand how these molecules function and interact with each other, which forms the basis for a molecular understanding of disease and the development of targeted therapies. For decades, X-ray crystallography has been the dominant technique to determine these 3D structures. Only a decade ago, advances in technology and data processing resulted in a dramatic improvement of the resolution at which structures of biomolecular assemblies can be determined using another technique: cryo-electron microscopy (cryo-EM). This has been referred to as “the resolution revolution”. Since then, an ever increasing group of structural biologists are using cryo-EM. They employ a technique named Single Particle Analysis (SPA), in which thousands of individual macromolecules are imaged. These images are then computationally iteratively aligned and averaged to generate a three-dimensional reconstruction of the macromolecule. SPA works best if a very pure and concentrated macromolecule of interest can be captured in random orientations within a thin layer (10-50nm) of vitreous ice. Maastricht University has been the inventor of the machine that is found in most labs worldwide used for this: the VitroBot. We have been the inventor of succeeding technologies that allow for much better control of this process: the VitroJet. In here, we will develop a novel chemical way to expand our arsenal for preparing SPA samples of defined thickness. We will design, produce and test chemical spacers to allow for a controlled sample thickness. If successful, this will provide an easy, affordable solution for the ~1000 laboratories worldwide using SPA, and help them with their in vitro studies necessary for an improved molecular understanding of the Chemistry of Life.