Given the substantial increase in children attending center-based childcare over the past decades, the consequences of center-based childcare for children’s development have gained more attention in developmental research. However, the relation between center-based childcare and children’s neurocognitive development remains relatively underexplored. The aim of this study was therefore to examine the relations between quantity of center-based childcare during infancy and the neurocognitive development (both functional brain networks and self-regulation) of 584 Dutch children. Small-world brain networks and children’s self-regulation were assessed during infancy (around 10 months of age) and the preschool period (2–6 years of age). The findings revealed that the quantity of center-based childcare during infancy was unrelated to individual differences in children’s functional brain networks. However, spending more hours per week in center-based childcare was positively related to the development of self-regulation in preschool age children, regardless of children’s sex or the levels of exposure to risk and maternal support in the home environment. More insight into the positive effects of center-based childcare on children’s development from infancy to toddlerhood can help to increase our insight into a better work–life balance and labor force participation of parents with young children. Moreover, this study highlights that Dutch center-based childcare offers opportunities to invest in positive child outcomes in children, including self-regulation.
INTRODUCTION: In the Netherlands, Diagnostic Reference Levels (DRLs) have not been based on a national survey as proposed by ICRP. Instead, local exposure data, expert judgment and the international scientific literature were used as sources. This study investigated whether the current DRLs are reasonable for Dutch radiological practice.METHODS: A national project was set up, in which radiography students carried out dose measurements in hospitals supervised by medical physicists. The project ran from 2014 to 2017 and dose values were analysed for a trend over time. In the absence of such a trend, the joint yearly data sets were considered a single data set and were analysed together. In this way the national project mimicked a national survey.RESULTS: For six out of eleven radiological procedures enough data was collected for further analysis. In the first step of the analysis no trend was found over time for any of these procedures. In the second step the joint analysis lead to suggestions for five new DRL values that are far below the current ones. The new DRLs are based on the 75 percentile values of the distributions of all dose data per procedure.CONCLUSION: The results show that the current DRLs are too high for five of the six procedures that have been analysed. For the other five procedures more data needs to be collected. Moreover, the mean weights of the patients are higher than expected. This introduces bias when these are not recorded and the mean weight is assumed to be 77 kg.IMPLICATIONS FOR PRACTICE: The current checking of doses for compliance with the DRLs needs to be changed. Both the procedure (regarding weights) and the values of the DRLs should be updated.
INTRODUCTION: In the Netherlands, hospitals have difficulty in implementing the formal procedure of comparing radiation dose values to Diagnostic Reference Levels (DRLs).METHODS: To support the hospitals, train radiography students, and carry out a nationwide dose survey, diagnostic radiography students performed 125 DRL comparisons for nine different procedures in 29 radiology departments. Students were instructed at three Dutch Universities of Applied Sciences with a radiography programme and supervised by medical physicists from the participating hospitals.RESULTS: After a pilot study in the western part of the country in eight hospitals, this study was enlarged to involve 21 hospitals from all over the Netherlands. The 86 obtained dose comparisons fall below the DRLs in 97% of all cases. This very high compliance may have been enhanced by the voluntary participation of hospitals that are confident about their performance.CONCLUSION: The results indicate that the current DRLs that were not based on a national survey, may need to be updated, sometimes to half their current value. For chest and pelvis examinations the DRLs could be lowered from 12 and 300 μGy·m 2 to the 75-percentile values found in this study of 5,9 and 188 μGy·m 2, respectively.
Het doel van het project is om inzicht te krijgen in praktische en commerciële haalbaarheid rondom de Aquabooster van het bedrijf Wabbi dat eigendom is van studentondernemer Faik Durmus. Het onderzoek waaruit de Aquabooster is ontstaan is gedaan door studenten van de opleiding Biologie en Medisch Laboratoriumonderzoek aan de Saxion Hogeschool. Daarmee borduurt dit project voort op praktijkgericht onderzoek vanuit een kennisinstelling. De Aquabooster is het enige product van het bedrijf Wabbi. De Aquabooster reinigt herbruikbare flessen (zoals de Dopper®) van consumenten met als doel de levensduur te verlengen en de afvalberg te verlagen. Hiermee hoopt Wabbi bij te dragen aan SDG12: ‘Responsible consumption and production’. De belangrijkste projectactiviteiten om het doel te realiseren omvatten: a. Het bouwen van meerdere prototypes; b. Validatie van de prototypes in relevante fieldlabs teneinde feedback uit de markt te krijgen; c. Onderzoek naar Intellectueel Eigendom; d. Schrijven van een businessplan. Deze activiteiten moeten er toe leiden dat er een beeld ontstaat over de potentie van Wabbi met haar Aquabooster. Het project duurt 9 maanden en het budget bedraagt conform begroting €40.000. De projectpartners zijn: Wabbi, Het Saxion Centrum voor Ondernemerschap (penvoerder), de lectoraten Mechatronica en Industrial Design en een partner ten aanzien van het onderzoek naar Intellectueel Eigendom (wordt nog gezocht). Aanvullend worden studenten ingezet om feedback uit de markt te krijgen en deelsystemen te ontwikkelen.