Europe’s aging population is leading to a growing number of people affected by chronic disease, which will continue over the coming decades. Healthcare systems are under pressure to deliver appropriate care, partly due to the burden imposed on their limited financial and human resources by the growing number of people with (multiple) chronic diseases. Therefore, there is a strong call for patient self-management to meet these patients’ healthcare needs. While many patients experience medication self-management as difficult, it poses additional challenges for people with limited health literacy. This thesis aims to explore the needs of patients with a chronic disease and limited health literacy regarding medication self-management and how support for medication self-management can be tailored to those needs.
The studies in this thesis aim to increase understanding of the effects of various characteristics of scientific news about a common chronic disease, i.e., diabetes, on the cognitive responses (e.g., emotions, attitudes, intentions) of diabetes patients. The research questions presented in this thesis are guided by the Health Belief Model, a theoretical framework developed to explain and predict healthrelated behaviours based on an individual’s beliefs and attitudes. The model asserts that perceived barriers to a recommended health behavior, advantages of the behavior, self-efficacy in executing the behavior, and disease severity and personal susceptibility to the disease are important predictors of a health behavior. Communication is one of the cues to action (i.e., stimuli) that may trigger the decision-making process relating to accepting a medical or lifestyle recommendation.
Nowadays, digital tools for mathematics education are sophisticated and widely available. These tools offer important opportunities, but also come with constraints. Some tools are hard to tailor by teachers, educational designers and researchers; their functionality has to be taken for granted. Other tools offer many possible educational applications, which require didactical choices. In both cases, one may experience a tension between a teacher’s didactical goals and the tool’s affordances. From the perspective of Realistic Mathematics Education (RME), this challenge concerns both guided reinvention and didactical phenomenology. In this chapter, this dialectic relationship will be addressed through the description of two particular cases of using digital tools in Dutch mathematics education: the introduction of the graphing calculator (GC), and the evolution of the online Digital Mathematics Environment (DME). From these two case descriptions, my conclusion is that students need to develop new techniques for using digital tools; techniques that interact with conceptual understanding. For teachers, it is important to be able to tailor the digital tool to their didactical intentions. From the perspective of RME, I conclude that its match with using digital technology is not self-evident. Guided reinvention may be challenged by the rigid character of the tools, and the phenomena that form the point of departure of the learning of mathematics may change in a technology-rich classroom.
LINK