The built environment accounts for approximately 30-40% of the total energy consumption in the Netherlands and Germany (RVO, 2015). The INTERREG project Cleantech Energy Crossing therefore aims to facilitate the energy transition in this area by promoting cross-border collaboration. Through the realization of various innovations and new technological products, this project wants to make an important contribution in achieving the climate targets of the Netherlands (-20% CO2 emissions to 2020) and North Rhine-Westphalia (-25% CO2 emissions to 2020).
MULTIFILE
To achieve the “well below 2 degrees” targets, a new ecosystem needs to be defined where citizens become more active, co-managing with relevant stakeholders, the government, and third parties. This means moving from the traditional concept of citizens-as-consumers towards energy citizenship. Positive Energy Districts (PEDs) will be the test-bed area where this transformation will take place through social, technological, and governance innovation. This paper focuses on benefits and barriers towards energy citizenships and gathers a diverse set of experiences for the definition of PEDs and Local Energy Markets from the Horizon2020 Smart Cities and Communities projects: Making City, Pocityf, and Atelier.
The goal of a local energy community (LEC) is to create a more sustainable, resilient, and efficient energy system by reducing dependence on centralized power sources and enabling greater participation and control by local communities and individuals. LEC requires transformations in local energy systems, and strongly depends on the preferences and actions of the local actors involved. The necessity for extensive stakeholder involvement adds complexity to the energy transition, posing a significant challenge for all involved parties. The municipality of Leidschendam-Voorburg has committed to the national decision for energy transition. It has taken a strategic approach by proceeding De Heuvel/Amstelwijk as the pioneer in this initiative, leading the way for other neighborhoods to follow. It is crucial to devise strategies that effectively facilitate stakeholder engagement. To this end, a thorough stakeholder analysis is needed. Such an analysis can focus on the identification of key stakeholders, their interests, their influence, and their behavioral characteristics in relation to the energy transition. Additionally, it's crucial to uncover the challenges encountered by these stakeholders and finally develop appropriate strategies to address them hence enhance their engagement. This thesis begins with an introduction to the research background, including a presentation of the case study and a statement of the problem identified in the field, followed by the research questions underpinning the study. A thorough literature review ensues, providing a robust synthesis of existing research relating to stakeholder engagement in LECs, with a view to expediting energy transitions. The literature review not only forms the foundation for the research methods adopted in this study but also promotes in the construction of the conceptual model. Subsequent to the literature review, the research method is detailed. The filed research is conducted in five steps: Step 1 - identification of stakeholders, Step 2 - prioritization of stakeholders, Step 3 - interviewing, Step 4 - data analysis, including stakeholder profiling with mapping and addressing challenges, and finally, Step 5 - proposal of strategies for stakeholder engagement enhancement based on the expected and current levels of stakeholders engagement. This research collects necessary information to understand the profiles of stakeholders in De Heuvel/Amstelwijk, tackle challenges faced by different stakeholders, propose strategies to increase stakeholders engagement. It not only aims to enrich the depth of theoretical knowledge on the subject matter but also strives to aid in the development of a localized energy strategy that is optimally suited for the De Heuvel/Amstelwijk neighborhood as good example for other neighborhoods.
A fast growing percentage (currently 75% ) of the EU population lives in urban areas, using 70% of available energy resources. In the global competition for talent, growth and investments, quality of city life and the attractiveness of cities as environments for learning, innovation, doing business and job creation, are now the key parameters for success. Therefore cities need to provide solutions to significantly increase their overall energy and resource efficiency through actions addressing the building stock, energy systems, mobility, and air quality.The European Energy Union of 2015 aims to ensure secure, affordable and climate-friendly energy for EU citizens and businesses among others, by bringing new technologies and renewed infrastructure to cut household bills, create jobs and boost growth, for achieving a sustainable, low carbon and environmentally friendly economy, putting Europe at the forefront of renewable energy production and winning the fight against global warming.However, the retail market is not functioning properly. Many household consumers have too little choices of energy suppliers and too little control over their energy costs. An unacceptably high percentage of European households cannot afford to pay their energy bills. Energy infrastructure is ageing and is not adjusted to the increased production from renewables. As a consequence there is still a need to attract investments, with the current market design and national policies not setting the right incentives and providing insufficient predictability for potential investors. With an increasing share of renewable energy sources in the coming decades, the generation of electricity/energy will change drastically from present-day centralized production by gigawatt fossil-fueled plants towards decentralized generation, in cities mostly by local household and district level RES (e.g PV, wind turbines) systems operating in the level of micro-grids. With the intermittent nature of renewable energy, grid stress is a challenge. Therefore there is a need for more flexibility in the energy system. Technology can be of great help in linking resource efficiency and flexibility in energy supply and demand with innovative, inclusive and more efficient services for citizens and businesses. To realize the European targets for further growth of renewable energy in the energy market, and to exploit both on a European and global level the expected technological opportunities in a sustainable manner, city planners, administrators, universities, entrepreneurs, citizens, and all other relevant stakeholders, need to work together and be the key moving wheel of future EU cities development.Our SolutionIn the light of such a transiting environment, the need for strategies that help cities to smartly integrate technological solutions becomes more and more apparent. Given this condition and the fact that cities can act as large-scale demonstrators of integrated solutions, and want to contribute to the socially inclusive energy and mobility transition, IRIS offers an excellent opportunity to demonstrate and replicate the cities’ great potential. For more information see the HKU Smart Citieswebsite or check out the EU-website.