Green energy is just one of the two types of energy humanity needs, the energy for our man-made world, including cities, road networks, industries and technological systems (energy for the systems that drive out the ecology). However, a second type of energy is needed to meet our biological needs, energy from plant and or animal raw materials (from ecology). Green energy feeds the main competitor of ecology, our organistic source of energy. With the expansion of energy for unbridled technology, the imbalance between the man-made world and ecology will increase. Renewable energy is quickly running out at the expense of the ecological energy sources needed for life. It is argued that unless we control ourselves now, the imbalance between man-made (inorganic)systems and life (organic systems) will easily increase.
MULTIFILE
Background: When the resting energy expenditure (REE) of overweight and obese adolescents cannot be measured by indirect calorimetry, it has to be predicted with an equation. Objective: The aim of this study was to examine the validity of published equations for REE compared with indirect calorimetry in overweight and obese adolescents. Design: Predictive equations based on weight, height, sex, age, fatfree mass (FFM), and fat mass were compared with measured REE. REE was measured by indirect calorimetry, and body composition was measured by dual-energy X-ray absorptiometry. The accuracy of the REE equations was evaluated on the basis of the percentage of adolescents predicted within 10% of REE measured, the mean percentage difference between predicted and measured values (bias), and the root mean squared prediction error (RMSE). Results: Forty-three predictive equations (of which 12 were based on FFM) were included. Validation was based on 70 girls and 51 boys with a mean age of 14.5 y and a mean (6SD) body mass index SD score of 2.93 6 0.45. The percentage of adolescents with accurate predictions ranged from 74% to 12% depending on the equation used. The most accurate and precise equation for these adolescents was the Molnar equation (accurate predictions: 74%; bias: –1.2%; RMSE: 174 kcal/d). The often-used Schofield-weight equation for age 10–18 y was not accurate (accurate predictions: 50%; bias: +10.7%; RMSE: 276 kcal/d). Conclusions: Indirect calorimetry remains the method of choice for REE in overweight and obese adolescents. However, the sex-specific Molnar REE prediction equation appears to be the most accurate for overweight and obese adolescents aged 12–18 y. This trial was registered at www.trialregister.nl with the Netherlands Trial Register as ISRCTN27626398.
The critical care community still has mixed feelings when considering the optimal nutrition of intensive care unit (ICU) patients, which is understandable as randomized controlled trials have not been very helpful in improving clinical practice. There have been no randomized controlled trials (RCTs) to contribute to the discussion, especially concerning the role of enterally fed protein in optimal critical care. Recent studies on the route of feeding have shown that enteral nutrition (EN) is not necessarily superior to parenteral nutrition (PN) [1, 2]. There appears to be a strong consensus, with backup from a meta-analysis, on the preferential use of EN over PN [3]. The infection rate was especially used as an argument; however, this is not substantiated in recent trials [1, 2]. We have to consider how applicable this current knowledge is to all ICU patients. Early EN is still the preferred way of feeding [3]. Starting feeding early may improve the outcome of ICU patients. RCTs have all investigated (supplemental parenteral) energy delivery [4]. Only two trials have ‘considered’ protein: the PERMIT trial [5] (protein supplemented, equal level) and EAT-ICU trial [6] (protein supplemented, higher level). Early energy delivery should be applied cautiously since it appears to be related to worse outcome in ICU patients [7, 8, 9]. Therefore, and from the perspective of clinical practice, the Swiss Supplemental PN (SPN) trial appears to provide the most logical design [10]—start with early EN and evaluate on day 3 what the level of energy delivery is; when delivery levels are low (< 60%) start supplementation PN. In clinical practice in our ICU the enteral feeding levels are high enough to avoid PN supplementation, which therefore restricts the specific indication to use PN. The focus of this research has been caloric delivery. There are more than enough observational data to support that higher protein delivery is associated with improved outcome in ICU patients [7, 8, 9]. These observational studies clearly show the benefit of higher protein delivery. However, they are considered relatively weak evidence since illness is considered a confounding factor in the relationship between delivery and outcome for which we cannot completely adjust. Randomized trials have not been conducted, although two trials with randomized high(er) amino acid infusion are available and somewhat contradicting [11, 12]. As with the studies on caloric delivery, the studies on protein have been hampered by insufficient knowledge on energy and protein metabolism under these (patho)physiological circumstances in the ICU patient [7, 8, 9]. Therefore, mechanistic studies on the protein physiology in ICU patients is an essential and current development. The Swedish group of Wernerman and Rooyackers has provided crucial information on the topic. They showed that it was possible to change protein balance during the early phase of admission to the ICU from negative to positive by a short-term (3-h) high-level (1 g/kg/day) amino acid (AA) infusion [13]. This observation was very important to help understand the physiology since it showed that, under these circumstances of critical illness, some basic principles of nutrition still perform well. In the December 2017 issue of Critical Care, Sundstrom et al. showed that the effect of supplemental AA infusion at 3 h is still present at 24 h [14]. Why is this so important to know? We know from extensive studies in sports and the elderly that protein synthesis can be stimulated by bolus protein feeding; however, we know relatively little about the effects of continuous (low dose per time unit) feeding. While the absolute levels of protein balance still have to be considered with caution (e.g., choice of tracer), and we are not completely sure where the protein is going, we now know this positive effect on protein balance is lasting. The next challenge is to reconnect this physiological information with the outcome of ICU patients. We have shown that muscle (protein) mass at admission to the ICU is relevant for the outcome of ICU patients [15]. We do not know if we can change muscle mass and outcome of ICU patients with protein nutrition. The study by Sundstrom et al. [14] is very promising for protein balance, but will that be enough to change outcome? And, if so, is that true for all patients—does one size fit all? The ICU patient group is heterogeneous. Earlier, we found high protein delivery to be associated with lower mortality, except for sepsis patients and patients with early caloric overfeeding [7]. The EAT-ICU trial did not find an effect of early goal-directed feeding on physical component score at 6 months or on mortality [6]. Goal-directed feeding included feeding energy based on indirect calorimetry and protein up to 1.5 g/kg/day from day 1. Feeding calories up to the measured caloric target from day 1 may be equal to caloric overfeeding [7]. The 47% of patients with sepsis in the EAT-ICU trial might also not benefit from the higher protein feeding [7]. Therefore, the effects of protein and energy cannot be assessed individually from this trial. Ferrie et al. showed interesting differences in muscle mass and function between an AA infusion rate of 0.8 and 1.2 g/kg/day [12], but not all patients are equal—one size does not fit all! Those patients with a low protein reserve (low muscle mass) may be at highest risk in the ICU and may benefit more from intervention with early protein nutrition. We have to await further studies, including randomized studies and post-hoc observational studies, to further develop this area of interest. The studies trying to understand the mechanism behind the physiological effect are important as well; we might come nearer to the truth of what works and what does not work in ICU nutrition.
Along with the rapidly growing number of disabled people participating in competitive sports, there is an increased need for (para)medical support in disability sports. Disabled athletes experience differences in body composition, metabolism, training load and habitual activity patterns compared with non-disabled athletes. Moreover, it has been suggested that the well-recognized athlete triad, and low energy availability and low bone mineral density in particular, is even a greater challenge in disabled athletes. Therefore, it is not surprising that sport nutritionists of disabled athletes have expressed an urgency for increased knowledge and insights on the nutritional demands of this group. This project aims to investigate energy expenditure, dietary intake, body composition and bone health of disabled athletes, ultimately leading to nutritional guidelines that promote health and optimal sports performance for this unique population. For this purpose, we will conduct a series of studies and implementation activities that are inter-related and build on the latest insights from sports practice, technology and science. Our international consortium is highly qualified to achieve this goal. It consists of knowledge institutes including world-leading experts in sport and nutrition research, complemented with practical insights from nutritionists working with disabled athletes and the involvement of athletes and teams through the Dutch and Norwegian Olympic committees. The international collaboration, which is a clear strength of this project, is not only focused on research, but also on the optimization of professional practice and educational activities. In this regard, the outcomes of this project will be directly available for practical use by the (para)medical staff working with disabled athletes, and will be extensively communicated to sport teams to ensure that the new insights are directly embedded into daily practice. The project outcomes will also be incorporated in educational activities for dietetics and sport and exercise students, thereby increasing knowledge of future practitioners.
Along with the rapidly growing number of disabled people participating in competitive sports, there is an increased need for (para)medical support in disability sports. Disabled athletes experience differences in body composition, metabolism, training load and habitual activity patterns compared with non-disabled athletes. Moreover, it has been suggested that the well-recognized athlete triad, and low energy availability and low bone mineral density in particular, is even a greater challenge in disabled athletes. Therefore, it is not surprising that sport nutritionists of disabled athletes have expressed an urgency for increased knowledge and insights on the nutritional demands of this group. This project aims to investigate energy expenditure, dietary intake, body composition and bone health of disabled athletes, ultimately leading to nutritional guidelines that promote health and optimal sports performance for this unique population. For this purpose, we will conduct a series of studies and implementation activities that are inter-related and build on the latest insights from sports practice, technology and science. Our international consortium is highly qualified to achieve this goal. It consists of knowledge institutes including world-leading experts in sport and nutrition research, complemented with practical insights from nutritionists working with disabled athletes and the involvement of athletes and teams through the Dutch and Norwegian Olympic committees. The international collaboration, which is a clear strength of this project, is not only focused on research, but also on the optimization of professional practice and educational activities. In this regard, the outcomes of this project will be directly available for practical use by the (para)medical staff working with disabled athletes, and will be extensively communicated to sport teams to ensure that the new insights are directly embedded into daily practice. The project outcomes will also be incorporated in educational activities for dietetics and sport and exercise students, thereby increasing knowledge of future practitioners.