This report describes the creation and use of a database for energy storage technologies which was developed in conjunction with Netbeheer Nederland and the Hanze University of Applied Sciences. This database can be used to make comparisons between a selection of storage technologies and will provide a method for ranking energy storage technology suitability based on the desired application requirements. In addition, this document describes the creation of the energy storage label which contains detailed characteristics for specific storage systems. The layout of the storage labels enables the analysis of different storage technologies in a comprehensive, understandable and comparative manner. A sampling of storage technology labels are stored in an excel spreadsheet and are also compiled in Appendix I of this report; the storage technologies represented here were found to be well suited to enable flexibility in energy supply and to potentially provide support for renewable energy integration [37] [36]. The data in the labels is presented on a series of graphs to allow comparisons of the technologies. Finally, the use and limitations of energy storage technologies are discussed. The results of this research can be used to support the Dutch enewable Energy Transition by providing important information regarding energy storage in both technically detailed and general terms. This information can be useful for energy market parties in order to analyze the role of storage in future energy scenarios and to develop appropriate strategies to ensure energy supply.
MULTIFILE
Energy cooperatives are beginning to expand their role from stimulating small-scale electricity production to developing local energy systems, including cooperatively owned energy storage solutions. However, many technical, social and financial obstacles are encountered in this process. It is as yet unclear how new roles of citizens, building owners, grid operators and energy cooperatives will develop. Furthermore, it is difficult to assess if a feasible business case is at all possible given present context conditions in the Netherlands.
MULTIFILE
The intermittency of renewable energy technologies requires adequate storage technologies. Hydrogen systems consisting of electrolysers, storage tanks, and fuel cells can be implemented as well as batteries. The requirements of the hydrogen purification unit is missing from literature. We measured the same for a 4.5 kW PEM electrolyser to be 0.8 kW for 10 min.A simulation to hybridize the hydrogen system, including its purification unit, with lithium-ion batteries for energy storage is presented; the batteries also support the electrolyser. We simulated a scenario for operating a Dutch household off-electric-grid using solar and wind electricity to find the capacities and costs of the components of the system.Although the energy use of the purification unit is small, it influences the operation of the system, affecting the sizing of the components. The battery as a fast response efficient secondary storage system increases the ability of the electrolyser to start up.
DOCUMENT
There is an ongoing transition towards renewable energy sources in order to combat climate change. National power grids are suffering due to the rapid introduction of new energy sources and have other disadvantages. Local Energy Systems (LESs) are a beneficial example of an off-grid energy systems that can aid the energy transition. LESs are community driven and require participating and steering members. This can be achieved through empowering end-users to become active participants or steerers. End-users can be empowered to become an active participant through engagement with energy management activities. This does not work for empowering to steer, which begs the question, how to empower end-users or participants to become steerers in Local Energy Systems. Through a literature review this study explores the importance of establishing a group containing steerers with diverse skills, strong leadership, and engagement with the environment and community. Additionally, this study identifies the strategy that empowers end-users to steer. Which is training technological and managemental skills; and training capabilities in establishing relations with local participants and intermediary organisations. To apply these findings more precisely a secondary analysis is conducted on a survey with 599 participants. The original study researched willingness to participate in LESs, however the secondary analysis establishes three important factors to predict willingness to steer. These are energy independence, community trust, and community resistance. Additionally, men with a high level of education are most willing to become steerers per default, thus different demographics generally require more empowerment.
DOCUMENT
The built environment requires energy-flexible buildings to reduce energy peak loads and to maximize the use of (decentralized) renewable energy sources. The challenge is to arrive at smart control strategies that respond to the increasing variations in both the energy demand as well as the variable energy supply. This enables grid integration in existing energy networks with limited capacity and maximises use of decentralized sustainable generation. Buildings can play a key role in the optimization of the grid capacity by applying demand-side management control. To adjust the grid energy demand profile of a building without compromising the user requirements, the building should acquire some energy flexibility capacity. The main ambition of the Brains for Buildings Work Package 2 is to develop smart control strategies that use the operational flexibility of non-residential buildings to minimize energy costs, reduce emissions and avoid spikes in power network load, without compromising comfort levels. To realise this ambition the following key components will be developed within the B4B WP2: (A) Development of open-source HVAC and electric services models, (B) development of energy demand prediction models and (C) development of flexibility management control models. This report describes the developed first two key components, (A) and (B). This report presents different prediction models covering various building components. The models are from three different types: white box models, grey-box models, and black-box models. Each model developed is presented in a different chapter. The chapters start with the goal of the prediction model, followed by the description of the model and the results obtained when applied to a case study. The models developed are two approaches based on white box models (1) White box models based on Modelica libraries for energy prediction of a building and its components and (2) Hybrid predictive digital twin based on white box building models to predict the dynamic energy response of the building and its components. (3) Using CO₂ monitoring data to derive either ventilation flow rate or occupancy. (4) Prediction of the heating demand of a building. (5) Feedforward neural network model to predict the building energy usage and its uncertainty. (6) Prediction of PV solar production. The first model aims to predict the energy use and energy production pattern of different building configurations with open-source software, OpenModelica, and open-source libraries, IBPSA libraries. The white-box model simulation results are used to produce design and control advice for increasing the building energy flexibility. The use of the libraries for making a model has first been tested in a simple residential unit, and now is being tested in a non-residential unit, the Haagse Hogeschool building. The lessons learned show that it is possible to model a building by making use of a combination of libraries, however the development of the model is very time consuming. The test also highlighted the need for defining standard scenarios to test the energy flexibility and the need for a practical visualization if the simulation results are to be used to give advice about potential increase of the energy flexibility. The goal of the hybrid model, which is based on a white based model for the building and systems and a data driven model for user behaviour, is to predict the energy demand and energy supply of a building. The model's application focuses on the use case of the TNO building at Stieltjesweg in Delft during a summer period, with a specific emphasis on cooling demand. Preliminary analysis shows that the monitoring results of the building behaviour is in line with the simulation results. Currently, development is in progress to improve the model predictions by including the solar shading from surrounding buildings, models of automatic shading devices, and model calibration including the energy use of the chiller. The goal of the third model is to derive recent and current ventilation flow rate over time based on monitoring data on CO₂ concentration and occupancy, as well as deriving recent and current occupancy over time, based on monitoring data on CO₂ concentration and ventilation flow rate. The grey-box model used is based on the GEKKO python tool. The model was tested with the data of 6 Windesheim University of Applied Sciences office rooms. The model had low precision deriving the ventilation flow rate, especially at low CO2 concentration rates. The model had a good precision deriving occupancy from CO₂ concentration and ventilation flow rate. Further research is needed to determine if these findings apply in different situations, such as meeting spaces and classrooms. The goal of the fourth chapter is to compare the working of a simplified white box model and black-box model to predict the heating energy use of a building. The aim is to integrate these prediction models in the energy management system of SME buildings. The two models have been tested with data from a residential unit since at the time of the analysis the data of a SME building was not available. The prediction models developed have a low accuracy and in their current form cannot be integrated in an energy management system. In general, black-box model prediction obtained a higher accuracy than the white box model. The goal of the fifth model is to predict the energy use in a building using a black-box model and measure the uncertainty in the prediction. The black-box model is based on a feed-forward neural network. The model has been tested with the data of two buildings: educational and commercial buildings. The strength of the model is in the ensemble prediction and the realization that uncertainty is intrinsically present in the data as an absolute deviation. Using a rolling window technique, the model can predict energy use and uncertainty, incorporating possible building-use changes. The testing in two different cases demonstrates the applicability of the model for different types of buildings. The goal of the sixth and last model developed is to predict the energy production of PV panels in a building with the use of a black-box model. The choice for developing the model of the PV panels is based on the analysis of the main contributors of the peak energy demand and peak energy delivery in the case of the DWA office building. On a fault free test set, the model meets the requirements for a calibrated model according to the FEMP and ASHRAE criteria for the error metrics. According to the IPMVP criteria the model should be improved further. The results of the performance metrics agree in range with values as found in literature. For accurate peak prediction a year of training data is recommended in the given approach without lagged variables. This report presents the results and lessons learned from implementing white-box, grey-box and black-box models to predict energy use and energy production of buildings or of variables directly related to them. Each of the models has its advantages and disadvantages. Further research in this line is needed to develop the potential of this approach.
DOCUMENT
To reduce greenhouse gas emissions, countries around the world are pursuing electrification policies. In residential areas, electrification will increase electricity supply and demand, which is expected to increase grid congestion at a faster rate than grids can be reinforced. Battery energy storage (BES) has the potential to reduce grid congestion and defer grid reinforcement, thus supporting the energy transition. But, BES could equally exacerbate grid congestion. This leads to the question: What are the trade-offs between different battery control strategies, considering battery performance and battery grid impacts? This paper addresses this question using the battery energy storage evaluation method (BESEM), which interlinks a BES model with an electricity grid model to simulate the interactions between these two systems. In this paper, the BESEM is applied to a case study, wherein the relative effects of different BES control strategies are compared. The results from this case study indicate that batteries can reduce grid congestion if they are passively controlled (i.e., constraining battery power) or actively controlled (i.e., overriding normal battery operations). Using batteries to reduce congestion was found to reduce the primary benefits provided by the batteries to the battery owners, but could increase secondary benefits. Further, passive battery controls were found to be nearly as effective as active battery controls at reducing grid congestion in certain situations. These findings indicate that the trade-offs between different battery control strategies are not always obvious, and should be evaluated using a method like the BESEM.
DOCUMENT
The Heating Ventilation and Air Conditioning (HVAC) sector is responsible for a large part of the total worldwide energy consumption, a significant part of which is caused by incorrect operation of controls and maintenance. HVAC systems are becoming increasingly complex, especially due to multi-commodity energy sources, and as a result, the chance of failures in systems and controls will increase. Therefore, systems that diagnose energy performance are of paramount importance. However, despite much research on Fault Detection and Diagnosis (FDD) methods for HVAC systems, they are rarely applied. One major reason is that proposed methods are different from the approaches taken by HVAC designers who employ process and instrumentation diagrams (P&IDs). This led to the following main research question: Which FDD architecture is suitable for HVAC systems in general to support the set up and implementation of FDD methods, including energy performance diagnosis? First, an energy performance FDD architecture based on information embedded in P&IDs was elaborated. The new FDD method, called the 4S3F method, combines systems theory with data analysis. In the 4S3F method, the detection and diagnosis phases are separated. The symptoms and faults are classified into 4 types of symptoms (deviations from balance equations, operating states (OS) and energy performance (EP), and additional information) and 3 types of faults (component, control and model faults). Second, the 4S3F method has been tested in four case studies. In the first case study, the symptom detection part was tested using historical Building Management System (BMS) data for a whole year: the combined heat and power plant of the THUAS (The Hague University of Applied Sciences) building in Delft, including an aquifer thermal energy storage (ATES) system, a heat pump, a gas boiler and hot and cold water hydronic systems. This case study showed that balance, EP and OS symptoms can be extracted from the P&ID and the presence of symptoms detected. In the second case study, a proof of principle of the fault diagnosis part of the 4S3F method was successfully performed on the same HVAC system extracting possible component and control faults from the P&ID. A Bayesian Network diagnostic, which mimics the way of diagnosis by HVAC engineers, was applied to identify the probability of all possible faults by interpreting the symptoms. The diagnostic Bayesian network (DBN) was set up in accordance with the P&ID, i.e., with the same structure. Energy savings from fault corrections were estimated to be up to 25% of the primary energy consumption, while the HVAC system was initially considered to have an excellent performance. In the third case study, a demand-driven ventilation system (DCV) was analysed. The analysis showed that the 4S3F method works also to identify faults on an air ventilation system.
DOCUMENT
The increasing share of renewable production like wind and PV poses new challenges to our energy system. The intermittent behavior and lack of controllability on these sources requires flexibility measures like storage and conversion. Production, consumption, transportation, storage and conversion systems become more intertwined. The increasing complexity of the system requires new control strategies to fulfill existing requirements.The SynergyS project addresses the main question how to operate increasingly complex energy systems in a controllable, robust, safe, affordable, and reliable way. Goal of the project is to develop and test a smart control system for a multi-commodity energy system (MCES), with electricity, hydrogen and heat. In scope are an industrial cluster (Chemistry Park Delfzijl) and a residential cluster (Leeuwarden) and their mutual interaction. Results are experimentally tested in two real-life demo-sites scale models: Centre of Expertise Energy (EnTranCe) and The Green Village (TU Delft) represent respectively the industrial and residential cluster.The result will be a market-driven control system to operate a multi-commodity energy system, integrating the industrial and residential cluster. The experimental setup is a combination of physical demo-site assets complemented with (digital) asset models. Experimental validation is based on a demo-scenario including real time data, simulated data and several stress tests.In this session we’ll elaborate more on the project and present (preliminary) results on the testing criteria, scenarios and experimental setup.
LINK
The need to reduce carbon emissions calls for more use of renewable generation, particularly distributed resources. The intermittency of renewable generation, and concerns about energy security, require us to become more independent of central grid operation by use of local or regional (micro-grid) electricity systems. Distributed generation, allied to the commercial availability of battery storage products, permits this–the pathway to energy autonomy. This paper reviews the contribution of different renewable energy sources (RES), trends in energy storage technologies to enable energy autonomy, and the centralised and decentralised techniques that coordinate the associated energy management. The paper covers energy autonomy at different scales, ranging from household levels to district levels. The improvements in grid independency are measured accordingly. There is discussion of this measurement and of the economic and ecological benefits from energy autonomy in the context of policy frameworks.
DOCUMENT