The importance of water and energy accessibility and use has become more important as new insight into their role for sustainable development goals has become mainstream. The inclusion of water and energy in strategic decision-making is thus key. Supply chain network design (SCND) in the food industry is an interesting case study for the incorporation of water and energy utilization during the design process of global production systems. In the current green SCND research, frequently, single indicators are used such as carbon emissions to measure environmental impact. This paper presents a case study applied to an orange juice supply chain, formulated as a multi-objective optimization model. A single environmental impact indicator optimization approach is paired against one that includes water and energy use explicitly in the objective function set. Mixed conclusions are shown from the results pairing the two strategies side by side.
Analyse the results from a representative selection of the supply chain studies for school feeding programmes in Kenya, Ghana and Mali, and make specific suggestions for interventions that can efficiently include SHF in the supply chains.
This publication follows and analysis the proces in the region Westerkwartier in the Netherlands in their effort to built a whole new regionale food chain. In this report there is a remarkeble role for the knowledge instutions on vocational and applied level.
The composition of diets and supplements given to bovine cattle are constantly evolving. These changes are driven by the social call for a more sustainable beef and dairy production, interests to influence the nutritional value of bovine products for human consumption, and to increase animal health. These adaptations can introduce (new) compounds in the beef and milk supply chain. Currently, the golden standard to study transfer of compounds from feed or veterinary medicine to cows and consequences for human health is performing animal studies, which are time consuming, costly and thus limited. Although animal studies are increasingly debated for ethical reasons, cows are still in the top 10 list of most used animals for animal experiments in Europe. There is, however, no widely applicable alternative modelling tool available to rapidly predict transfer of compounds, apart from individual components like cattle kinetic models and simple in vitro kinetic assays. Therefore, this project aims to develop a first-of-a-kind generic bovine kinetic modelling platform that predicts the transfer of compounds from medicine/supplements and feed to bovine tissues. This will provide new tools for the efficacy and safety evaluation of veterinary medicine and feed and facilitates a rapid evaluation of human health effects of bovine origin food products, thereby contributing to an increased safety in the cattle production chain and supporting product innovations, all without animal testing. This will be accomplished by integrating existing in silico and in vitro techniques into a generic bovine modelling platform and further developing state-of-the-art in vitro bovine organoid cell culturing systems. The platform can be used world-wide by stakeholders involved in the cattle industry (feed-/veterinary medicine industry, regulators, risk assessors). The project partners involve a strong combination of academia, knowledge institutes, small and medium enterprises, industry, branche-organisations and Proefdiervrij, all driven by their pursuit for animal free innovations.
The Netherlands must build one million homes and retrofit eight million buildings by 2030, while halving CO₂ emissions and achieving a circular economy by 2050. This demands a shift from high-carbon materials like concrete—responsible for 8% of global CO₂ emissions—and imported timber, which inflates supply-chain emissions. Mycelium offers a regenerative, biodegradable alternative with carbon-sequestration potential and minimal energy input. Though typically used for insulation, it shows structural promise—achieving compressive strengths of 5.7 MPa and thermal conductivities of 0.03–0.05 W/(m·K). Hemp and other lignocellulosic agricultural byproducts are commonly used as substrates for mycelium composites due to their fibrous structure and availability. However, hemp (for e.g.) requires 300–500 mm of water per cycle and centralized processing, limiting its circularity in urban or resource-scarce areas. Aligned with the CLICKNL Design Power Agenda, this project explores material-driven design innovation through a load-bearing mycelium-based architectural product system, advancing circular, locally embedded construction. To reduce environmental impact, we will develop composites using regional bio-waste—viz. alienated vegetation, food waste, agriculture and port byproducts—eliminating the need for water-intensive hemp cultivation. Edible fungi like Pleurotus ostreatus (oyster mushroom) will enable dual-function systems that yield food and building material. Design is key for moving beyond a singular block to a full product system: a cluster of modular units emphasizing geometry, interconnectivity, and compatibility with other building layers. Aesthetic variation (dimension, color, texture) supports adaptable, expressive architecture. We will further assess lifecycle performance, end-of-(service)-life scenarios, and on-site fabrication potential. A 1:1 prototype at The Green Village will serve as a demonstrator, accelerating stakeholder engagement and upscaling. By contributing to the KIA mission on Social Desirability, we aim to shift paradigms—reimagining how we build, live, grow, and connect through circular architecture.
It is predicted that 5 million rural jobs will have disappeared before 2016. These changes do notonly concern farmers. In their decline all food chain related SMEs will be affected severely. Newbusiness opportunities can be found in short food supply chains. However, they can onlysucceed if handled professionally and on a proper scale. This presents opportunities on 4interconnected strands:Collect market relevant regional dataDevelop innovative specialisation strategies for SMEsForge new forms of regional cooperation and partnership based on common benefits andshared values.Acquire specific skillsREFRAME takes up these challenges. In a living lab of 5 regional pilots, partners willdemonstrate the Regional Food Frame (RFF) as an effective set of measures to scale up andaccommodate urban food demands and regional supplies. New data will reveal the regions’ ownstrengths and resources to match food demand and supply. REFRAME provides a supportinfrastructure for food related SMEs to develop and implement their smart specializationstrategies in food chains on the urban-rural axis. On their way towards a RFF, all pilots will use a5-step road map. A transnational learning lab will be set up in support of skill development andtraining of all stakeholders. REFRAME pools the know-how needed to set up these Regional FoodFrames in a transnational network of experts, each closely linked and footed in its own pilotregion.