In this study we use aggregated weighted scores of environmental effects to study environmental influences on well-being and happiness. To this end, we split a sample of Netherlands Twin Register (NTR) participants into a training (N =4857) and test (N =2077) sample. In the training sample, we use elastic net regression to estimate effect sizes for associations between life satisfaction and two sets of environmental variables: one based on self- report socioenvironmental data, and one based on objective physical environmental data. Based on these effect sizes, we create two poly-environmental scores (PES-S and PES-O, for self-reports and objective data respectively). In the test sample, we perform association analyses between different measures of well-being and the two PESs. We find that the PES-S explains ~36% of the variance in well-being, while the PES-O does not significantly contribute to the model. Variance in other well-being measures (i.e., different life satisfaction domains, subjective happiness, quality of life, flourishing, psychological well-being, self-rated health, depressive problems, and loneliness) are explained to varying extents by the PESs, ranging from 6.36% (self-rated health) to 36.66% (loneliness). These predictive values did not change during the COVID-19 pandemic (N =3214). Validating the PES-S in the UK biobank (N =40,614), we find that the UK biobank PES-S explains about ~12% of the variance in happiness. Lastly, we examine if there is any indication for gene-environment correlation (rGE), the phenomenon where one’s genetic predisposition influences exposure to the environment, by associating the PESs with polygenic scores (PGS) in a sample of Netherlands Twin Register (NTR) and UK Biobank participants. While the PES and PGS were not correlated in the NTR sample, they were correlated in the larger UK biobank sample, indicating the potential presence of rGE. We discuss several limitations pertaining to our dataset, such as a potential influence of common method bias, and reflect on how PESs might be used in future research.
MULTIFILE
BackgroundIdentifying modifiable factors associated with well-being is of increased interest for public policy guidance. Developments in record linkage make it possible to identify what contributes to well-being from a myriad of factors. To this end, we link two large-scale data resources; the Geoscience and Health Cohort Consortium, a collection of geo-data, and the Netherlands Twin Register, which holds population-based well-being data.ObjectiveWe perform an Environment-Wide Association Study (EnWAS), where we examine 139 neighbourhood-level environmental exposures in relation to well-being.MethodsFirst, we performed a generalized estimation equation regression (N = 11,975) to test for the effects of environmental exposures on well-being. Second, to account for multicollinearity amongst exposures, we performed principal component regression. Finally, using a genetically informative design, we examined whether environmental exposure is driven by genetic predisposition for well-being.ResultsWe identified 21 environmental factors that were associated with well-being in the domains: housing stock, income, core neighbourhood characteristics, livability, and socioeconomic status. Of these associations, socioeconomic status and safety are indicated as the most important factors to explain differences in well-being. No evidence of gene-environment correlation was found.SignificanceThese observed associations, especially neighbourhood safety, could be informative for policy makers and provide public policy guidance to improve well-being. Our results show that linking databases is a fruitful exercise to identify determinants of mental health that would remain unknown by a more unilateral approach.
DOCUMENT
Hedonic (happiness) and eudaimonic (meaning in life) well-being are negatively related to depressive symptoms. Genetic variants play a role in this association, reflected in substantial genetic correlations. We investigated the overlap and differences between well-being and depressive symptoms, using results of Genome-Wide Association studies (GWAS) in UK Biobank. Subtracting GWAS summary statistics of depressive symptoms from those of happiness and meaning in life, we obtained GWASs of respectively “pure” happiness (neffective = 216,497) and “pure” meaning (neffective = 102,300). For both, we identified one genome-wide significant SNP (rs1078141 and rs79520962, respectively). After subtraction, SNP heritability reduced from 6.3% to 3.3% for pure happiness and from 6.2% to 4.2% for pure meaning. The genetic correlation between the well-being measures reduced from 0.78 to 0.65. Pure happiness and pure meaning became genetically unrelated to traits strongly associated with depressive symptoms, including loneliness, and psychiatric disorders. For other traits, including ADHD, educational attainment, and smoking, the genetic correlations of well-being versus pure well-being changed substantially. GWAS-by-subtraction allowed us to investigate the genetic variance of well-being unrelated to depressive symptoms. Genetic correlations with different traits led to new insights about this unique part of well-being. Our results can be used as a starting point to test causal relationships with other variables, and design future well-being interventions.
MULTIFILE