The sports club is seen as a new relevant setting to promote health-enhancing physical activity (HEPA) among inactive population groups. Little is known about the effectiveness of strategies and activities implemented in the sports club setting on increasing HEPA levels. This study investigated the effects of Start2Bike, a six-week training program for inactive adults and adult novice cyclers, on HEPA levels of participants in the Netherlands. To measure physical activity, the Short QUestionnaire to ASsess Health-enhancing physical activity was used (SQUASH). Start2Bike participants were measured at baseline, six weeks and six months. A matched control group was measured at baseline and six months. The main outcome measure was whether participants met the Dutch Norm for Health-enhancing Physical Activity (DNHPA: 30 min of moderate-intensity activity on five days a week); Fit-norm (20 min of vigorous-intensity activity on three days a week); and Combi-norm (meeting the DNHPA and/or Fit-norm). Other outcome measures included: total minutes of physical activity per week; and minutes of physical activity per week per domain and intensity category. Statistical analyses consisted of McNemar tests and paired t-tests (within-group changes); and multiple logistic and linear regression analyses (between-group changes).
DOCUMENT
Toenemende prevalentie van overgewicht en obesitas onder jeugd wordt, in ieder geval ten dele, veroorzaakt door te weinig fysieke activiteit. Omdat ieder kind een groot deel van zijn of haar jeugdige leven op school doorbrengt kunnen scholen een centrale rol spelen in het tegengaan van deze bewegingsarmoede. Het meest voor de hand liggende schoolvak lijkt hierbij de lichamelijke opvoeding1 (LO) te zijn. De belangrijkste doelstelling van het schoolvak LO is immers om leerlingen dusdanig te motiveren en enthousiast te maken voor sport en bewegen zodat dit uiteindelijk resulteert in een actieve leefstijl, zowel buiten school als in het verdere leven. Daarnaast is LO tevens het enige verplichte schoolvak waar fysieke activiteit een centrale plek inneemt; de les zelf is in potentie ook een structurele bron van fysieke activiteit. Globaal gezien kan LO dus op een indirecte en een directe manier bijdragen aan de fysieke activiteit van leerlingen, een tweedeling die werd geïntroduceerd in hoofdstuk 1. Waar echter tot op heden onduidelijkheid over bestaat, zeker wat betreft de Nederlandse situatie, is hoe groot de bijdrage van de LO aan dagelijkse fysieke activiteit feitelijk is. De vraag die daarom centraal staat in dit proefschrift is in hoeverre het vak LO, zoals dat op dit moment gegeven wordt op basis- en voortgezet onderwijs, een bijdrage levert aan de fysieke activiteit van kinderen en adolescenten, zowel direct (de les als bron van fysieke activiteit), als indirect (motivatie voor een actieve leefstijl). Voor de beantwoording van deze vraag zijn een aantal studies uitgevoerd. Allereerst is in hoofdstuk 2 door middel van een literatuurstudie onderzocht in hoeverre interventies met een LO-component effectief zijn in het stimuleren van fysieke activiteit. Hieruit blijkt dat er alleen overtuigend bewijs bestaat voor een directe bijdrage van de les LO aan de fysieke activiteit van kinderen en adolescenten. Oftewel, in de les LO zelf wordt er matig-tot-intensief bewogen. De effecten van interventies met een LO component op de fysieke activiteit buiten school of in het latere leven zijn minder overtuigend of zelfs afwezig. In hoofdstuk 3 wordt een cross-sectionele studie beschreven waarin middels het combineren van gegevens vanuit een hartslag-versnellingsmeter met de gegevens uit een activiteitendagboek voor het eerst inzicht verkregen wordt in de daadwerkelijke bijdrage van een reguliere les LO (naast andere fysieke activiteiten zoals fietsen) aan de totale dagelijkse fysieke activiteit van middelbare scholieren. De resultaten wijzen uit dat 17% van de totale hoeveelheid beweging onder schooltijd zijn oorsprong vindt in de lessen LO en dat op dagen dat een leerling een les LO heeft, deze les verantwoordelijk is voor ongeveer 30% van de totale fysieke activiteit op die dag. Opvallend is daarnaast dat 15% van de totale fysieke activiteit op een weekdag zijn oorsprong vindt in het actief transport naar school, voornamelijk fietsen. Hoofdstuk 4 beschrijft een studie waarin de focus ligt op de intensiteit van lessen LO in het voortgezet onderwijs (VO) en het basisonderwijs (BO). Tevens is gekeken naar factoren die de intensiteit van een les beïnvloeden. De resultaten wijzen uit dat 47% en 40% van een les LO op respectievelijk het VO en het BO voldoet aan de intensiteit van bewegen zoals omschreven in de Nederlandse Norm voor Gezond Bewegen (matig-tot-intensief fysiek actief). Dit komt overeen met ongeveer een derde van de dagelijks aanbevolen hoeveelheid beweging voor deze doelgroep. Opvallend is dat op het VO jongens significant actiever zijn tijdens de lessen LO dan meisjes. Dit verschil blijkt zijn oorsprong te hebben in lessen waarin competitieve spelvormen (basketbal, voetbal etc.) centraal staan. Mogelijkerwijs verhindert de dominantie van jongens tijdens spelvormen dat meisjes in een les even actief kunnen zijn als jongens. Dit is een serieuze beperking van de mate waarin een les LO kan bijdragen aan het totale beweeggedrag van meisjes, gezien het feit dat ongeveer 60% van het Nederlandse LO curriculum uit (veelal competitieve) spelvormen bestaat.
DOCUMENT
Background: The objective of this study was to derive evidence-based physical activity guidelines for the general Dutch population. Methods: Two systematic reviews were conducted of English language meta-analyses in PubMed summarizing separately randomized controlled trials and prospective cohort studies on the relation between physical activity and sedentary behaviour on the one hand and the risk of all-cause mortality and incidence of 15 major chronic diseases and conditions on the other hand. Other outcome measures were risk factors for cardiovascular disease and type 2 diabetes, physical functioning, and fitness. On the basis of these reviews, an expert committee derived physical activity guidelines. In deriving the guidelines, the committee first selected only experimental and observational prospective findings with a strong level of evidence and then integrated both lines of evidence. Results: The evidence found for beneficial effects on a large number of the outcome measures was sufficiently strong to draw up guidelines to increase physical activity and reduce sedentary behaviour, respectively. At the same time, the current evidence did not provide a sufficient basis for quantifying how much physical activity is minimally needed to achieve beneficial health effects, or at what amount sedentary behaviour becomes detrimental. A general tenet was that at every level of current activity, further increases in physical activity provide additional health benefits, with relatively larger effects among those who are currently not active or active only at light intensity. Three specific guidelines on (1) moderate- and vigorous-intensity physical activity, (2) bone- and musclestrengthening activities, and (3) sedentary behaviour were formulated separately for adults and children. Conclusions: There is an unabated need for evidence-based physical activity guidelines that can guide public health policies. Research in which physical activity is measured both objectively (quantity) and subjectively (type and quality) is needed to provide better estimates of the type and actual amount of physical activity required for health.
DOCUMENT
BACKGROUND: To better understand physical activity behavior and its health benefits in people living with health conditions, we studied people with and without 20 different self-reported health conditions with regard to (1) their physical activity levels, (2) factors correlated with these physical activity levels, and (3) the association between physical activity and all-cause mortality.METHODS: We used a subsample (n = 88,659) of the Lifelines cohort study from the Netherlands. For people living with and without 20 different self-reported health conditions, we studied the aforementioned factors in relation to physical activity. Physical activity was assessed with the Short Questionnaire to Assess Health-Enhancing Physical Activity Questionnaire, and mortality data were obtained from the Dutch death register.RESULTS: People with a reported health condition were less likely to meet physical activity guidelines than people without a reported health condition (odds ratios ranging from 0.55 to 0.89). Higher body mass index and sitting time, and lower self-rated health, physical functioning, and education levels were associated with lower odds of meeting physical activity guidelines across most health conditions. Finally, we found a protective association between physical activity and all-cause mortality in both people living with and without different health conditions.CONCLUSION: People living with different health conditions are generally less physically active compared with people living without a health condition. Both people living with and without self-reported health conditions share a number of key factors associated with physical activity levels. We also observed the expected protective association between physical activity and all-cause mortality.
DOCUMENT
Objective: To evaluate the preliminary effectiveness of a goal-directed movement intervention using a movement sensor on physical activity of hospitalized patients. Design: Prospective, pre-post study. Setting: A university medical center. Participants: Patients admitted to the pulmonology and nephrology/gastro-enterology wards. Intervention: The movement intervention consisted of (1) self-monitoring of patients' physical activity, (2) setting daily movement goals and (3) posters with exercises and walking routes. Physical activity was measured with a movement sensor (PAM AM400) which measures active minutes per day. Main measures: Primary outcome was the mean difference in active minutes per day pre- and post-implementation. Secondary outcomes were length of stay, discharge destination, immobility-related complications, physical functioning, perceived difficulty to move, 30-day readmission, 30-day mortality and the adoption of the intervention. Results: A total of 61 patients was included pre-implementation, and a total of 56 patients was included post-implementation. Pre-implementation, patients were active 38 ± 21 minutes (mean ± SD) per day, and post-implementation 50 ± 31 minutes per day (Δ12, P = 0.031). Perceived difficulty to move decreased from 3.4 to 1.7 (0-10) (Δ1.7, P = 0.008). No significant differences were found in other secondary outcomes. Conclusions: The goal-directed movement intervention seems to increase physical activity levels during hospitalization. Therefore, this intervention might be useful for other hospitals to stimulate inpatient physical activity.
DOCUMENT
The current study determined the test-retest reliability and concurrent validity of the Adapted Short QUestionnaire to ASsess Health-enhancing physical activity (Adapted-SQUASH) in adults with disabilities. Before filling in the Adapted-SQUASH twice with a recall period of 2 weeks, participants wore the Actiheart activity monitor up to 1 week. For the test-retest reliability (N = 68), Intraclass correlation coefficients (ICCs) were 0.67 (p < 0.001) for the total activity score (min x intensity/week) and 0.76 (p < 0.001) for the total minutes of activity (min/week). For the concurrent validity (N = 58), the Spearman correlation coefficient was 0.40 (p = 0.002) between the total activity score of the first administration of the Adapted-SQUASH and activity energy expenditure from the Actiheart (kcals kg-1 min-1). The ICC was 0.22 (p = 0.027) between the total minutes of activity assessed with the first administration of the Adapted-SQUASH and Actiheart. The Adapted-SQUASH is an acceptable measure to assess self-reported physical activity in large populations of adults with disabilities but is not applicable at the individual level due to wide limits of agreement. Self-reported physical activity assessed with the Adapted-SQUASH does not accurately represent physical activity assessed with the Actiheart in adults with disabilities, as indicated with a systematic bias between both instruments in the Bland-Altman analysis.
DOCUMENT
Parental involvement is a crucial force in children’s development, learning and success at school and in life [1]. Participation, defined by the World Health Organization as ‘a person’s involvement in life situations’ [2] for children means involvement in everyday activities, such as recreational, leisure, school and household activities [3]. Several authors use the term social participation emphasising the importance of engagement in social situations [4, 5]. Children’s participation in daily life is vital for healthy development, social and physical competencies, social-emotional well-being, sense of meaning and purpose in life [6]. Through participation in different social contexts, children gather the knowledge and skills needed to interact, play, work, and live with other people [4, 7, 8]. Unfortunately, research shows that children with a physical disability are at risk of lower participation in everyday activities [9]; they participate less frequently in almost all activities compared with children without physical disabilities [10, 11], have fewer friends and often feel socially isolated [12-14]. Parents, in particular, positively influence the participation of their children with a physical disability at school, at home and in the community [15]. They undertake many actions to improve their child’s participation in daily life [15, 16]. However, little information is available about what parents of children with a physical disability do to enable their child’s participation, what they come across and what kind of needs they have. The overall aim of this thesis was to investigate parents’ actions, challenges, and needs while enhancing the participation of their school-aged child with a physical disability. In order to achieve this aim, two steps have been made. In the first step, the literature has been examined to explore the topic of this thesis (actions, challenges and needs) and to clarify definitions for the concepts of participation and social participation. Second, for the purposes of giving breadth and depth of understanding of the topic of this thesis a mixed methods approach using three different empirical research methods [17-19], was applied to gather information from parents regarding their actions, challenges and needs.
DOCUMENT
This paper reports on the first stage of a research project1) that aims to incorporate objective measures of physical activity into health and lifestyle surveys. Physical activity is typically measured with questionnaires that are known to have measurement issues, and specifically, overestimate the amount of physical activity of the population. In a lab setting, 40 participants wore four different sensors on five different body parts, while performing various activities (sitting, standing, stepping with two intensities, bicycling with two intensities, walking stairs and jumping). During the first four activities, energy expenditure was measured by monitoring heart rate and the gas volume of in‐ and expired O2 and CO2. Participants subsequently wore two sensor systems (the ActivPAL on the thigh and the UKK on the waist) for a week. They also kept a diary keeping track of their physical activities, work and travel hours. Machine learning algorithms were trained with different methods to determine which sensor and which method was best able to differentiate the various activities and the intensity with which they were performed. It was found that the ActivPAL had the highest overall accuracy, possibly because the data generated on the upper tigh seems to be best distinguishing between different types of activities and therefore led to the highest accuracy. Accuracy could be slightly increased by including measures of heartrate. For recognizing intensity, three different measures were compared: allocation of MET values to activities (used by ActivPAL), median absolute deviation, and heart rate. It turns out that each method has merits and disadvantages, but median absolute deviation seems to be the most promishing metric. The search for the best method of gauging intensity is still ongoing. Subsequently, the algorithms developed for the lab data were used to determine physical activity in the week people wore the devices during their everyday activities. It quickly turned out that the models are far from ready to be used on free living data. Two approaches are suggested to remedy this: additional research with meticulously labelled free living data, e.g., by combining a Time Use Survey with accelerometer measurements. The second is to focus on better determining intensity of movement, e.g., with the help of unsupervised pattern recognition techniques. Accuracy was but one of the requirements for choosing a sensor system for subsequent research and ultimate implementation of sensor measurement in health surveys. Sensor position on the body, wearability, costs, usability, flexibility of analysis, response, and adherence to protocol equally determine the choice for a sensor. Also from these additional points of view, the activPAL is our sensor of choice.
DOCUMENT
This paper introduces a creative approach aimed at empowering desk-bound occupational groups to address the issue of physical inactivity at workplaces. The approach involves a gamified toolkit called Workplace Vitality Mapping (WVM) (see Figure 1) designed to encourage self-reflection in sedentary contexts and foster the envision of physical vitality scenarios. This hybrid toolkit comprises two main components: A Card Game (on-site) for context reflection and a Co-design Canvas (Online) for co-designing vitality solutions. Through the card games, participants reflect on key sedentary contexts, contemplating their preferable physical vitality scenarios with relevant requirements. The co-design canvas facilitates the collaborative construction and discussion of vitality scenarios’ development. The perceptions and interactions of the proposed toolkit from the target group were studied and observed through a hybrid workshop, which demonstrated promising results in terms of promoting participants’ engagement experience in contextual reflections and deepening their systemic understanding to tackle the physical inactivity issue. As physical inactivity becomes an increasingly pressing concern, this approach offers a promising participatory way for gaining empathetic insights toward community-level solutions.
DOCUMENT
Introduction Physical activity levels of children with disabilities are low, as these children and their parents face a wide variety of both personal and environmental barriers. Behavior change techniques support pediatric physical therapists to address these barriers together with parents and children. We developed the What Moves You?! intervention Toolkit (WMY Toolkit) filled with behavioral change tools for use in pediatric physical therapy practice. Objective To evaluate the feasibility of using the WMY Toolkit in daily pediatric physical therapy practice. Methods We conducted a feasibility study with a qualitative approach using semi-structured interviews with pediatric physical therapists (n = 11). After one day of training, the pediatric physical therapists used the WMY Toolkit for a period of 9 weeks, when facilitating physical activity in children with disabilities. We analyzed the transcripts using an inductive thematic analysis followed by a deductive analysis using a feasibility framework. Results For acceptability, pediatric physical therapists found that the toolkit facilitated conversation about physical activity in a creative and playful manner. The working mechanisms identified were in line with the intended working mechanisms during development of the WMY Toolkit, such as focusing on problem solving, self-efficacy and independence. For demand, the pediatric physical therapists mentioned that they were able to use the WMY Toolkit in children with and without disabilities with a broad range of physical activity goals. For implementation, education is important as pediatric physical therapists expressed the need to have sufficient knowledge and to feel confident using the toolkit. For practicality, pediatric physical therapists were positive about the ease of which tools could be adapted for individual children. Some of the design and materials of the toolkit needed attention due to fragility and hygiene. Conclusion The WMY Toolkit is a promising and innovative way to integrate behavior change techniques into pediatric physical therapy practice.
LINK