Within the profile Technical Information Technology (ICT Department) the most important specializations are Embedded Software and Industrial Automation. About half of the Technical Information curriculum consists of learning modules, the other half is organized in projects. The whole study lasts four years. After two-and-a-half year students choose a specialization. Before the choice is made students have several occasions in which they learn something about the possible fields of specialization. In the first and second year there are two modules about Industrial Automation. First there is a module on actuators, sensors and interfacing, later a module on production systems. Finally there is an Industrial Automation project. In this project groups of students get the assignment to develop the control for a scale model flexible automation cell or to develop a monitoring system for this cell. In the last year of their studies students participate in a larger Industrial Automation project, often with an assignment from Industry. Here also the possibility exists to join multidisciplinary projects (IPD; integrated product development).
DOCUMENT
A description of our experiences with a model for education in innovative, interdisciplinary and international engineering. (Students from different (technical) disciplines in Higher Education are placed in industry for a period of eighteen months after completing two-and-a-half year of theoretical studies). They work in multi-disciplinary projects on different themes, in order to grow to fully equal employees in industry. Besides students, teachers and company employees participate in the projects. The involvement of other level students, both from University and from Vocational Education, is recommended. The experiments in practice give confidence in the succesful implementation of this model.
DOCUMENT
The present study aims at understanding and addressing certain challenges of automation of composite repairs. This research is part of a larger, SIA-RAAK funded project FIXAR, running in three Universities of Applied Sciences in the Netherlands and a cluster of knowledge institutions and industry partners.The approach followed in the current study, consists of three steps. First, the identification of the feasibility and most promising procedures for automated composite repair by analysis of current state-of-the-art methods as prescribed by OEMs and standards. Processes which are tedious or even contain health risks may qualify for automation. Second, a comparison of curing alternatives for composite repairs is made, by means of the creation and testing of specimen using different curing strategies. Lastly, a benchmark test of human made composite repairs is used in order to set a reference baseline for automation quality. This benchmark can be then applied to define a lower limit and prevent over-optimization. The employed methodology includes data collection, analysis, modelling and experiments.
DOCUMENT
As a logical consequence of the advancements in automation of production of composite aircraft structures, more attention is paid to the automation of maintenance. Current repair procedures involve manual labour and exposure to harmful particles (such as dust, vapours) while final quality and evidencing depends largely on the skills of repair technicians. The current study aims to automate composite repair procedures for the aviation sector with the objective to counter these disadvantages. Main research question: ‘What is required for a robot system to assist in composite repairs’This research is part of a larger, SIA-RAAK funded project FIXAR, running in three Universities of Applied Sciences in the Netherlands and a cluster of knowledge institutions and industry partners.In the repair process of aircraft structures, repair by means of scarf or lap joints is common practice. First paint layers must be removed to inspect the area and prepare for further repair. Then damaged material is removed. Material is replaced and the repair is finished and painted. Tasks within the repair process that are considered dull or harmful are sanding and material removal. Current investigation focussed on automation of these tasks.
DOCUMENT
In recent years, a step change has been seen in the rate of adoption of Industry 4.0 technologies by manufacturers and industrial organizations alike. This article discusses the current state of the art in the adoption of Industry 4.0 technologies within the construction industry. Increasing complexity in onsite construction projects coupled with the need for higher productivity is leading to increased interest in the potential use of Industry 4.0 technologies. This article discusses the relevance of the following key Industry 4.0 technologies to construction: data analytics and artificial intelligence, robotics and automation, building information management, sensors and wearables, digital twin, and industrial connectivity. Industrial connectivity is a key aspect as it ensures that all Industry 4.0 technologies are interconnected allowing the full benefits to be realized. This article also presents a research agenda for the adoption of Industry 4.0 technologies within the construction sector, a three-phase use of intelligent assets from the point of manufacture up to after build, and a four-staged R&D process for the implementation of smart wearables in a digital enhanced construction site.
DOCUMENT
Smart home technologies are a large potential market for the construction and building services industry. This chapter discusses the topics consultants, installers, and suppliers of home automation systems encounter when working in the field. Improved communication skills and more flexible approaches to the design and installing of building services leads to many new opportunities for new products and services. There are a large number of requirements from the perspective of architectural design and building services engineering, which relate to the infrastructure that is needed for smart homes. An overview of these electrical engineering and ICT requirements is discussed. When working with clients, it is important to consider the additional set of rules of working in their homes. Clients may have additional needs in the field of home modifications that can also be addressed when doing retrofitting projects. An outline of steps to get stared and essential questions for professional care organization is given.
LINK
Athor supplied : "This paper describes an agent-based architecture for domotics. This architecture is based on requirements about expandability and hardware independence. The heart of the system is a multi-agent system. This system is distributed over several platforms to open the possibility to tie the agents directly to the actuators, sensors and devices involved. This way a level of abstraction is created and all intelligence of the system as a whole is related to the agents involved. A proof of concept has been built and functions as expected. By implementing real and simulated devices and an easy to use graphical interface, all kind of compositions can be studied using this platform."
DOCUMENT
Dutch industrial manufacturers are confronted a new and promising industrial robot: the collaborative robot (cobot). These small robotic arms are revolutionary as they allow direct and safe interaction with production workers for the very first time. The direct interaction between production worker and cobot has the potential to not only increase efficiency, but also enhance flexibility as it can align the strengths of (wo)man and machine more thoroughly. Currently, Dutch manufacturers are experimenting with cobots. To obtain a first understanding about the use of cobots in Dutch industrial practice and what the consequences are for operators and production work, we conducted an exploratory interview study (N=61). We learnt that most cobots under study are used for the production of one or a few large product batches (mass production) and work highly autonomous. The interaction between cobot and production worker is limited and reduced to operators preventing the cobot from falling into a standstill. The results tend to be in line with traditional industrial automation practices: an overemphasis on leveraging the technology’s potential and limited attention for the production workers’ work design and decision latitude. HR professionals were not involved and, therefore, miss out on a crucial opportunity to be of an added value.
MULTIFILE
Future work processes are going to change in several aspects. The working population (at least in Western European countries) is decreasing, while average age of employees increases. Their productivity is key to continuity in sectors like healthcare and manufacturing. Health and safety monitoring, combined with prevention measures must contribute to longer, more healthy and more productive working careers. The ‘tech-optimist’ approach to increase productivity is by means of automation and robotization, supported by IT, AI and heavy capital investments. Unfortunately, that kind of automation has not yet fulfilled its full promise as productivity enhancer as the pace of automation is significantly slower than anticipated and what productivity is gained -for instance in smart industry and healthcare- is considered to be ‘zero-sum’ as flexibility is equally lost (Armstrong et al., 2023). Simply ‘automating’ tasks too often leads to ‘brittle technology’ that is useless in unforeseen operational conditions or a changing reality. As such, it is unlikely to unlock high added-value. In healthcare industry we see “hardly any focus on research into innovations that save time to treat more patients.” (Gupta Strategists, 2021). Timesaving, more than classic productivity, should be the leading argument in rethinking the possibilities of human-technology collaboration, as it allows us to reallocate our human resources towards ‘care’, ’craft’ and ’creativity’.
DOCUMENT
Despite changing attitudes towards animal testing and current legislation to protect experimental animals, the rate of animal experiments seems to have changed little in recent years. On May 15–16, 2013, the In Vitro Testing Industrial Platform (IVTIP) held an open meeting to discuss the state of the art in alternative methods, how companies have, can, and will need to adapt and what drives and hinders regulatory acceptance and use. Several key messages arose from the meeting. First, industry and regulatory bodies should not wait for complete suites of alternative tests to become available, but should begin working with methods available right now (e.g., mining of existing animal data to direct future studies, implementation of alternative tests wherever scientifically valid rather than continuing to rely on animal tests) in non-animal and animal integrated strategies to reduce the numbers of animals tested. Sharing of information (communication), harmonization and standardization (coordination), commitment and collaboration are all required to improve the quality and speed of validation, acceptance, and implementation of tests. Finally, we consider how alternative methods can be used in research and development before formal implementation in regulations. Here we present the conclusions on what can be done already and suggest some solutions and strategies for the future.
DOCUMENT