This investigation explores relations between 1) a theory of human cognition, called Embodied Cognition, 2) the design of interactive systems and 3) the practice of ‘creative group meetings’ (of which the so-called ‘brainstorm’ is perhaps the best-known example). The investigation is one of Research-through-Design (Overbeeke et al., 2006). This means that, together with students and external stakeholders, I designed two interactive prototypes. Both systems contain a ‘mix’ of both physical and digital forms. Both are designed to be tools in creative meeting sessions, or brainstorms. The tools are meant to form a natural, element in the physical meeting space. The function of these devices is to support the formation of shared insight: that is, the tools should support the process by which participants together, during the activity, get a better grip on the design challenge that they are faced with. Over a series of iterations I reflected on the design process and outcome, and investigated how users interacted with the prototypes.
Responsive public spaces use interactive technologies to adapt to users and situations. This enhances the quality of the space as a public realm. However, the application of responsive technologies in spatial design is still to be explored. What exactly are the options for incorporating responsive technologies in spatial designs to improve the quality of public spaces? The book Responsive Public Spaces explores and disentangles this new assignment for designers, and presents inspiring examples. A consortium of spatial designers, interaction designers and local stakeholders, headed by the Chair of Spatial Urban Transformation of Amsterdam University of Applied Sciences, carried out a two-year practice-based study of responsive public spaces. This book draws on those insights to provide a practical approach and a roadmap for the new design process for responsive public spaces.The study results are of signi¬icance for various professional fields. The book is intended for clients and stakeholders involved in planning and design of public spaces, spatial designers, interaction designers and students.
This paper describes explorations into related technology and research regarding the application of interactive video projection within physical education and the gym of the future. We discuss the application of exergaming in physical education, spatial augmented reality as a technology and participatory design with teachers and children as a design method to develop new concepts. Based on our initial findings we propose directions for further research. Further work includes developing new applications based on the wishes, needs and ideas of physical education teachers and children, incorporating opportunities provided by recent technological developments.
In summer 2020, part of a quay wall in Amsterdam collapsed, and in 2010, construction for a parking lot in Amsterdam was hindered by old sewage lines. New sustainable electric systems are being built on top of the foundations of old windmills, in places where industry thrived in the 19th century. All these examples have one point in common: They involve largely unknown and invisible historic underground structures in a densely built historic city. We argue that truly circular building practices in old cities require smart interfaces that allow the circular use of data from the past when planning the future. The continuous use and reuse of the same plots of land stands in stark contrast with the discontinuity and dispersed nature of project-oriented information. Construction and data technology improves, but information about the past is incomplete. We have to break through the lack of historic continuity of data to make building practices truly circular. Future-oriented construction in Amsterdam requires historic knowledge and continuous documentation of interventions and findings over time. A web portal will bring together a range of diverse public and private, professional and citizen stakeholders, each with their own interests and needs. Two creative industry stakeholders, Yume interactive (Yume) and publisher NAI010, come together to work with a major engineering office (Witteveen+Bos), the AMS Institute, the office of Engineering of the Municipality of Amsterdam, UNESCO NL and two faculties of Delft University of Technology (Architecture and Computer Science) to inventorize historic datasets on the Amsterdam underground. The team will connect all the relevant stakeholders to develop a pilot methodology and a web portal connecting historic data sets for use in contemporary and future design. A book publication will document the process and outcomes, highlighting the need for circular practices that tie past, present and future.
This top-up project is related to the on-going RAAK MKB-project SafeGo (Seismic Monitoring, Design And Strengthening For thE GrOningen Region) . SafeGo combines knowledge of SMEs in the earthquake region of Groningen with innovative solutions and demonstration of technologies, to improve the process of seismic strengthening of houses. Innovative methods and approaches for monitoring and strengthening of structures are tested and further developed in SafeGo In the monitoring part of the project, SafeGo combines soil data, structural data and the sensor data to reach conclusions for the reasons behind observed damages in buildings. Fraeylemaborg, a castle-museum in Slochteren dating back to the 14th century, is used as a testbed. Various sensors are used for monitoring accelerations, tilt and water pressure. In the strengthening part of the project, masonry walls were built and strengthened by the participating SMEs. These walls are placed on the shake table and tested with real earthquake vibrations. A shake table is an accurate laboratory equipment which simulates earthquakes. Majority of the tasks in SafeGo are related either to the site or to the laboratory, which are environments outside of the school. Although an intensive student participation was initially planned, this was not achieved due to COVID19 crisis and the series of mobility restrictions, neither in the monitoring nor in the shake table testing parts of the project. This top-up project aims to transfer the knowledge and create interaction with the students for the SafeGo project. Visitation to the monitored building and presentations to the students on the monitoring system, visitations to the shake table laboratory and interactive events are planned within this project.