© 2025 SURF
DOCUMENT
DOCUMENT
This whitepaper explores what the impact is of the operating system (OS) of a smartphone on its lifespan, costs and environmental impact.
DOCUMENT
Universitäten sind Magneten für Studenten, Doktoranden, Professoren – und großeUnternehmen. Während einige Städte dadurch einen Wachstumsschub erleben,versuchen andere durch eine Hochschulneugründung nicht den Anschluss zu verlieren. Eins haben jedoch alle Wissensstädte gemeinsam: Die Gefahr, in eine Parallelgesellschaft aus Wissenselite und übriger Stadtbevölkerung auseinanderzubrechen
DOCUMENT
Quantifying measures of physical loading has been an essential part of performance monitoring within elite able-bodied sport, facilitated through advancing innovative technology. In wheelchair court sports (WCS) the inter-individual variability of physical impairments in the athletes increases the necessity for accurate load and performance measurements, while at the same time standard load monitoring methods (e.g. heart-rate) often fail in this group and dedicated WCS performance measurement methods are scarce. The objective of this review was to provide practitioners and researchers with an overview and recommendations to underpin the selection of suitable technologies for a variety of load and performance monitoring purposes specific to WCS. This review explored the different technologies that have been used for load and performance monitoring in WCS. During structured field testing, magnetic switch based devices, optical encoders and laser systems have all been used to monitor linear aspects of performance. However, movement in WCS is multidirectional, hence accelerations, decelerations and rotational performance and their impact on physiological responses and determination of skill level, is also of interest. Subsequently both for structured field testing as well as match-play and training, inertial measurement units mounted on wheels and frame have emerged as an accurate and practical option for quantifying linear and non-linear movements. In conclusion, each method has its place in load and performance measurement, yet inertial sensors seem most versatile and accurate. However, to add context to load and performance metrics, position-based acquisition devices such as automated image-based processing or local positioning systems are required.
DOCUMENT
In the face of increasing globalisation, with the biggest cities reaping the greatest rewards, knowledge economy specialist Willem van Winden examines the future for smaller university cities.
DOCUMENT
This paper describes some explorations on the concept of disassemblability as an important circularity indicator for products because of its severe impact on reuse value. Although usefulness of the concept for determining disassembly strategies and for improving circular product design clearly shows in earlier studies, the link with Industry 4.0 (I4.0)-related process innovation is still underexposed. For further technical development of the field of remanufacturing, research is needed on tools & training for operators, diagnostics, disassembly/repair instructions and forms of operator support. This includes the use of IoT and cobots in remanufacturing lines for automatic disassembly, sorting and recognition methods; providing guidance for operators and reduction of change-over times. A prototype for a disassembly work cell for a mobile phone has been developed together with researchers and students. This includes the removal of screws by means of a cobot using both vision & the available info in the product’s Bill-Of-Materials, the removal of covers, opening of snap fits and replacement of modules. This prototyping demonstrates that it is relatively easy to automate disassembly operations for an undamaged product, that has been designed with repairability in mind and for which product data and models are available. Process innovations like robotisation influence the disassemblability in a positive way, but current indicators like a Disassembly Index (DI) can’t reflect this properly. This study therefore concludes with suggestions for an evaluation of disassemblability by looking at the interaction between product, process and resources in a coherent way.
MULTIFILE
Data, the raw material from which information is derived, is stored, copied, moved and modified more easily than ever. This quantum leap reaches levels outside our imagination. Surrounded by sensors, recommendation systems, invisible algorithms, spreadsheets and blockchains, the ‘difference that makes a difference’ can no longer be identified. Big Data is a More Data ideology, driven by old school hypergrowth premisses. As Nathan Jurgenson once observed: “Big Data always stands in the shadow of the bigger data to come. The assumption is that there is more data today and there will necessarily be even more tomorrow, an expansion that will bring us ever closer to the inevitable pure ‘data totality.” (2) Nothing symbolizes the current hypergrowth obsession better than Big Data. Let’s investigate what happens when we apply degrowth to data and reserve datafication–as a decolonial project, a collective act of refusal, an ultimate sign of boredom. We’re done with you, data system, stand out of my light.
MULTIFILE
Electrification of transportation, communication, working and living continues worldwide. Televisions, telephones, servers are an important part of everyday life. These loads and most sustainable sources as well, have one thing in common: Direct Current. The Dutch research and educational programme ‘DC – road to its full potential’ studies the impact of feeding these appliances from a DC grid. An improvement in energy efficiency is expected, other benefits are unknown and practical considerations are needed to come to a proper comparison with an AC grid. This paper starts with a brief introduction of the programme and its first stages. These stages encompass firstly the commissioning, selection and implementation of a safe and user friendly testing facility, to compare performance of domestic appliances when powered with AC and DC. Secondly, the relationship between the DC-testing facility and existing modeling and simulation assignments is explained. Thirdly, first results are discussed in a broad sense. An improved energy efficiency of 3% to 5% is already demonstrated for domestic appliances. That opens up questions for the performance of a domestic DC system as a whole. The paper then ends with proposed minor changes in the programme and guidelines for future projects. These changes encompass further studying of domestic appliances for product-development purposes, leaving less means for new and costly high-power testing facilities. Possible gains are 1) material and component savings 2) simpler and cheaper exteriors 3) stable and safe in-house infrastructure 4) whilst combined with local sustainable generation. That is the road ahead. 10.1109/DUE.2014.6827758
DOCUMENT