We investigated whether Early Algebra lessons that explicitly aimed to elicit mathematical discussions (Shift-Problem Lessons) invoke more and qualitatively better mathematical discussions and raise students’ mathematical levels more than conventional lessons in a small group setting. A quasi-experimental study (pre- and post-test, control group) was conducted in 6 seventh-grade classes (N =160). An analysis of the interaction processes of five student groups showed that more mathematical discussions occurred in the Shift-Problem condition. The quality of the mathematical discussions in the Shift-Problem condition was better compared to that in the Conventional Textbook condition, but there is still more room for improvement. A qualitative illustration of two typical mathematical discussions in the Shift-Problem condition are provided. Although students’ mathematical levels were raised a fair amount in both conditions, no differences between conditions were found. We concluded that Shift-Problem Lessons are powerful for eliciting mathematical discussions in seventh-grade Shift-Problem Early Algebra Lessons.
DOCUMENT
The implementation of the new mathematical knowledge base in Dutch teacher education institutes for primary education raises a need for curriculum development. Teacher educators have to raise student teachers’ subject matter knowledge to a higher level. In working on this aim teacher educators experience that student teachers often feel uncertain about their mathematical skills and are not very interested in formal and abstract mathematics. Student teachers prefer to focus on mathematical pedagogical content knowledge. This paper presents two design studies that try to tackle this problem. The first one targets the development of student teachers’ specialized content knowledge (SCK) and the second one focuses on their horizon content knowledge (HCK). Both studies target developing student teachers’ mathematical subject matter knowledge in the perspective of teaching mathematics in primary school. In the studies we established student teachers’ learning environments that kept them involved and motivated, even when they found the mathematics hard to do. Primarily, this attitude supported their mathematical growth, while it also developed their pedagogical skills and insight. INTRODUCTION
DOCUMENT
It is a challenge for mathematics teachers to provide activities for their students at a high level of cognitive demand. In this article, we explore the possibilities that history of mathematics has to offer to meet this challenge. History of mathematics can be applied in mathematics education in different ways. We offer a framework for describing the appearances of history of mathematics in curriculum materials. This framework consists of four formats that are entitled speck, stamp, snippet, and story. Characteristic properties are named for each format, in terms of size, content, location, and function. The formats are related to four ascending levels of cognitive demand. We describe how these formats, together with design principles that are also derived from the history of mathematics, can be used to raise the cognitive level of existing tasks and design new tasks. The combination of formats, cognitive demand levels, and design principles is called the 4S-model. Finally, we advocate that this 4S-model can play a role in mathematics teacher training to enable prospective teachers to reach higher cognitive levels in their mathematics classrooms.
DOCUMENT